139 research outputs found

    Design and performance of an erbium-doped silicon waveguide detector operating at 1.5 µm

    Get PDF
    A new concept for an infrared waveguide detector based on silicon is introduced. It is fabricated using silicon-on-insulator material, and consists of an erbium-doped p-n junction located in the core of a silicon ridge waveguide. The detection scheme relies on the optical absorption of 1.5-µm light by Er3+ ions in the waveguide core, followed by electron-hole pair generation by the excited Er and subsequent carrier separation by the electric field of the p-n junction. By performing optical mode calculations and including realistic doping profiles, we show that an external quantum efficiency of 10^-3 can be achieved in a 4-cm-long waveguide detector fabricated using standard silicon processing. It is found that the quantum efficiency of the detector is mainly limited by free carrier absorption in the waveguide core, and may be further enhanced by optimizing the electrical doping profiles. Preliminary photocurrent measurements on an erbium-doped Si waveguide detector at room temperature show a clear erbium related photocurrent at 1.5 µm

    Photo-physical characterization of fluorophore Ru(bpy)32+ for optical biosensing applications

    Get PDF
    We studied absorption, emission and lifetime of the coordination compound tris(2,2′-bipyridyl)ruthenium(II) fluorophore (Ru(bpy)32+) both dissolved in water solutions and dried. Lifetime measurements were carried out using a new detector, the Silicon Photomultiplier (SiPM), which is more sensitive and physically much smaller than conventional optical detectors, such as imager and scanner. Through these analyses and a morphological characterization with transmission electron microscopy, revealed its usability for sensor applications, in particular, as dye in optical DNA-chip technology, a viable alternative to the conventional CY5 fluorophore. The use of Ru(bpy)32+ would solve some of the typical disadvantages related to Cy5's application, such as self-absorption of fluorescence and photobleaching. In addition, the Ru(bpy)32+ longer lifetime may play a key role in the definition of new optical DNA-chip. Keywords: Tris(2,2′-bipyridyl)ruthenium(II), Fluorophore, Spectroscopy, Lifetime measurements, SiPM, TE

    Deep electronic states in ion-implanted Si

    Get PDF
    In this paper we present an overview of the deep states present after ion-implantation by various species into n-type silicon, measured by Deep Level Transient Spectroscopy (DLTS) and high resolution Laplace DLTS (LDLTS). Both point and small extended defects are found, prior to any anneal, which can therefore be the precursors to more detrimental defects such as end of range loops. We show that the ion mass is linked to the concentrations of defects that are observed, and the presence of small interstitial clusters directly after ion implantation is established by comparing their behaviour with that of electrically active stacking faults. Finally, future applications of the LDLTS technique to ion-implanted regions in Si-based devices are outlined.</p

    Restoration of plakoglobin expression in bladder carcinoma cell lines suppresses cell migration and tumorigenic potential

    Get PDF
    The reduction or loss of plakoglobin expression in late-stage bladder cancer has been correlated with poor survival where upregulation of this catenin member by histone deacetylase inhibitors has been shown to accompany tumour suppression in an in vivo model. In this study, we directly addressed the question of the role of plakoglobin in bladder tumorigenesis following restoration, or knockdown of expression in bladder carcinoma cell lines. Restoration of plakoglobin expression resulted in a reduction in migration and suppression of tumorigenic potential in vivo. Immunocytochemistry revealed cytoplasmic and membranous localisation of plakoglobin in transfectants with <1% of cells displaying detectable nuclear localisation of plakoglobin. siRNA knockdown experiments targeting plakoglobin, revealed enhanced migration in all cell lines in the presence and absence of E-cadherin expression. In bladder cell lines expressing low levels of plakoglobin and desmoglein-2, elevated levels of desmoglein-2 were detected following restoration of plakoglobin expression in transfected cell lines. Analysis of wnt signalling revealed no activation event associated with plakoglobin expression in the bladder model. These results show that plakoglobin acts as a tumour suppressor gene in bladder carcinoma cells and the silencing of plakoglobin gene expression in late-stage bladder cancer is a primary event in tumour progression

    High-resolution satellite products improve hydrological modeling in northern Italy

    Get PDF
    Satellite-based Earth observations (EO) are an accurate and reliable data source for atmospheric and environmental science. Their increasing spatial and temporal resolutions, as well as the seamless availability over ungauged regions, make them appealing for hydrological modeling. This work shows recent advances in the use of high-resolution satellite-based EO data in hydrological modeling. In a set of six experiments, the distributed hydrological model Continuum is set up for the Po River basin (Italy) and forced, in turn, by satellite precipitation and evaporation, while satellite-derived soil moisture (SM) and snow depths are ingested into the model structure through a data-assimilation scheme. Further, satellite-based estimates of precipitation, evaporation, and river discharge are used for hydrological model calibration, and results are compared with those based on ground observations. Despite the high density of conventional ground measurements and the strong human influence in the focus region, all satellite products show strong potential for operational hydrological applications, with skillful estimates of river discharge throughout the model domain. Satellite-based evaporation and snow depths marginally improve (by 2 % and 4 %) the mean Kling–Gupta efficiency (KGE) at 27 river gauges, compared to a baseline simulation (KGEmean= 0.51) forced by high-quality conventional data. Precipitation has the largest impact on the model output, though the satellite data on average shows poorer skills compared to conventional data. Interestingly, a model calibration heavily relying on satellite data, as opposed to conventional data, provides a skillful reconstruction of river discharges, paving the way to fully satellite-driven hydrological applications.</p
    • …
    corecore