252 research outputs found

    Molecular Characterization of a isoenzyme of the targeting peptide degrading protease, PreP2- catalysis, subcellular localization, expression and evolution

    Get PDF
    We have previously identified a zinc metalloprotease involved in the degradation of mitochondrial and chloroplast targeting peptides, the presequence protease (PreP). In the Arabidopsis thaliana genomic database, there are two genes that correspond to the protease, the zinc metalloprotease (AAL90904) and the putative zinc metalloprotease (AAG13049). We have named the corresponding proteins AtPreP1 and AtPreP2, respectively. AtPreP1 and AtPreP2 show significant differences in their targeting peptides and the proteins are predicted to be localized in different compartments. AtPreP1 was shown to degrade both mitochondrial and chloroplast targeting peptides and to be dual targeted to both organelles using an ambiguous targeting peptide. Here, we have overexpressed, purified and characterized proteolytic and targeting properties of AtPreP2. AtPreP2 exhibits different proteolytic subsite specificity from AtPreP1 when used for degradation of organellar targeting peptides and their mutants. Interestingly, AtPreP2 precursor protein was also found to be dual targeted to both mitochondria and chloroplasts in a single and dual in vitro import system. Furthermore, targeting peptide of the AtPreP2 dually targeted green fluorescent protein (GFP) to both mitochondria and chloroplasts in tobacco protoplasts and leaves using an in vivo transient expression system. The targeting of both AtPreP1 and AtPreP2 proteases to chloroplasts in A. thaliana in vivo was confirmed via a shotgun mass spectrometric analysis of highly purified chloroplasts. Reverse transcription–polymerase chain reaction (RT–PCR) analysis revealed that AtPreP1 and AtPreP2 are differentially expressed in mature A. thaliana plants. Phylogenetic evidence indicated that AtPreP1 and AtPreP2 are recent gene duplicates that may have diverged through subfunctionalization

    Formyl Peptide Receptor as a Novel Therapeutic Target for Anxiety-Related Disorders

    Get PDF
    Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/-) mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface

    A Recent Class of Chemosensory Neurons Developed in Mouse and Rat

    Get PDF
    In most animal species, the vomeronasal organ ensures the individual recognition of conspecifics, a prerequisite for a successful reproduction. The vomeronasal organ expresses several receptors for pheromone detection. Mouse vomeronasal type-2 receptors (V2Rs) are restricted to the basal neurons of this organ and organized in four families. Family-A, B and D (family ABD) V2Rs are expressed monogenically (one receptor per neuron) and coexpress with either Vmn2r1 or Vmn2r2, two members of family-C V2Rs. Thus, basal neurons are characterized by specific combinations of two V2Rs. To investigate this issue, we raised antibodies against all family-C V2Rs and analyzed their expression pattern. We found that six out of seven family-C V2Rs (Vmn2r2-7) largely coexpressed and that none of the anti-Vmn2r2-7 antibodies significantly stained Vmn2r1 positive neurons. Thus, basal neurons are divided into two complementary subsets. The first subset (Vmn2r1-positive) preferentially coexpresses a distinct group of family-ABD V2Rs, whereas the second subset (Vmn2r2-7-positive) coexpresses the remaining group of V2Rs. Phylogenetic reconstruction and the analysis of genetic loci in various species reveal that receptors expressed by this second neuronal subset are recent branches of the V2R tree exclusively present in mouse and rat. Conversely, V2Rs expressed in Vmn2r1 positive neurons, are phylogenetically ancient and found in most vertebrates including rodents. Noticeably, the more recent neuronal subset expresses a type of Major Histocompatibility Complex genes only found in murine species. These results indicate that the expansion of the V2R repertoire in a murine ancestor occurred with the establishment of a new population of vomeronasal neurons in which coexists the polygenic expression of a recent group of family-C V2Rs (Vmn2r2-7) and the monogenic expression of a recent group of family-ABD V2Rs. This evolutionary innovation could provide a molecular rationale for the exquisite ability in individual recognition and mate choice of murine species

    Selective Loss of Cysteine Residues and Disulphide Bonds in a Potato Proteinase Inhibitor II Family

    Get PDF
    Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short) superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C), and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks) ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution

    Common Promoter Elements in Odorant and Vomeronasal Receptor Genes

    Get PDF
    In mammals, odorants and pheromones are detected by hundreds of odorant receptors (ORs) and vomeronasal receptors (V1Rs and V2Rs) expressed by sensory neurons that are respectively located in the main olfactory epithelium and in the vomeronasal organ. Even though these two olfactory systems are functionally and anatomically separate, their sensory neurons show a common mechanism of receptor gene regulation: each neuron expresses a single receptor gene from a single allele. The mechanisms underlying OR and VR gene expression remain unclear. Here we investigated if OR and V1R genes share common sequences in their promoter regions

    Study of two G-protein coupled receptor variants of human trace amine-associated receptor 5

    Get PDF
    Here we report the study of two bioengineered variants of human trace amine-associated receptor 5 (hTAAR5) that were expressed in stable tetracycline-inducible HEK293S cell lines. A systematic detergent screen showed that fos-choline-14 was the optimal detergent to solubilize and subsequently purify the receptors. Milligram quantities of both hTAAR5 variants were purified to near homogeneity using immunoaffinity chromatography followed by gel filtration. Circular dichroism showed that the purified receptors had helical secondary structures, indicating that they were properly folded. The purified receptors are not only suitable for functional analyses, but also for subsequent crystallization trials. To our knowledge, this is the first mammalian TAAR that has been heterologously expressed and purified. Our study will likely stimulate in the development of therapeutic drug targets for TAAR-associated diseases, as well as fabrication of TAAR-based sensing devices

    Fast and Robust Characterization of Time-Heterogeneous Sequence Evolutionary Processes Using Substitution Mapping

    Get PDF
    Genes and genomes do not evolve similarly in all branches of the tree of life. Detecting and characterizing the heterogeneity in time, and between lineages, of the nucleotide (or amino acid) substitution process is an important goal of current molecular evolutionary research. This task is typically achieved through the use of non-homogeneous models of sequence evolution, which being highly parametrized and computationally-demanding are not appropriate for large-scale analyses. Here we investigate an alternative methodological option based on probabilistic substitution mapping. The idea is to first reconstruct the substitutional history of each site of an alignment under a homogeneous model of sequence evolution, then to characterize variations in the substitution process across lineages based on substitution counts. Using simulated and published datasets, we demonstrate that probabilistic substitution mapping is robust in that it typically provides accurate reconstruction of sequence ancestry even when the true process is heterogeneous, but a homogeneous model is adopted. Consequently, we show that the new approach is essentially as efficient as and extremely faster than (up to 25 000 times) existing methods, thus paving the way for a systematic survey of substitution process heterogeneity across genes and lineages

    Drosophila Genes That Affect Meiosis Duration Are among the Meiosis Related Genes That Are More Often Found Duplicated

    Get PDF
    Using a phylogenetic approach, the examination of 33 meiosis/meiosis-related genes in 12 Drosophila species, revealed nine independent gene duplications, involving the genes cav, mre11, meiS332, polo and mtrm. Evidence is provided that at least eight out of the nine gene duplicates are functional. Therefore, the rate at which Drosophila meiosis/meiosis-related genes are duplicated and retained is estimated to be 0.0012 per gene per million years, a value that is similar to the average for all Drosophila genes. It should be noted that by using a phylogenetic approach the confounding effect of concerted evolution, that is known to lead to overestimation of the duplication and retention rate, is avoided. This is an important issue, since even in our moderate size sample, evidence for long-term concerted evolution (lasting for more than 30 million years) was found for the meiS332 gene pair in species of the Drosophila subgenus. Most striking, in contrast to theoretical expectations, is the finding that genes that encode proteins that must follow a close stoichiometric balance, such as polo, mtrm and meiS332 have been found duplicated. The duplicated genes may be examples of gene neofunctionalization. It is speculated that meiosis duration may be a trait that is under selection in Drosophila and that it has different optimal values in different species
    • …
    corecore