60 research outputs found
Inhaled activated protein C protects mice from ventilator-induced lung injury
Introduction: Activated Protein C (APC), an endogenous anticoagulant, improves tissue microperfusion and endothelial cell survival in systemic inflammatory states such as sepsis, but intravenous administration may cause severe bleeding. We have thus addressed the role of APC delivered locally by inhalation in preventing acute lung injury from alveolar overdistention and the subsequent ventilator-induced lung injury (VILI). We also assessed the effects of APC on the activation status of Extracellular-Regulated Kinase 1/2 (ERK) pathway, which has been shown to be involved in regulating pulmonary responses to mechanical stretch. Methods: Inhaled APC (12.5 mu g drotrecogin-alpha x 4 doses) or saline was given to tracheotomized C57/Bl6 mice starting 20 min prior to initiation of injurious mechanical ventilation with tidal volume 25 mL/Kg for 4 hours and then hourly thereafter; control groups receiving inhaled saline were ventilated with 8 mL/Kg for 30 min or 4 hr. We measured lung function (respiratory system elastance H), arterial blood gases, surrogates of vascular leak (broncho-alveolar lavage (BAL) total protein and angiotensin-converting enzyme (ACE)-activity), and parameters of inflammation (BAL neutrophils and lung tissue myeloperoxidase (MPO) activity). Morphological alterations induced by mechanical ventilation were examined in hematoxylin-eosin lung tissue sections. The activation status of ERK was probed in lung tissue homogenates by immunoblotting and in paraffin sections by immunohistochemistry. The effect of APC on ERK signaling downstream of the thrombin receptor was tested on A549 human lung epithelial cells by immunoblotting. Statistical analyses were performed using ANOVA with appropriate post-hoc testing. Results: In mice subjected to VILI without APC, we observed hypoxemia, increased respiratory system elastance and inflammation, assessed by BAL neutrophil counts and tissue MPO activity. BAL total protein levels and ACE activity were also elevated by VILI, indicating compromise of the alveolo-capillary barrier. In addition to preserving lung function, inhaled APC prevented endothelial barrier disruption and attenuated hypoxemia and the inflammatory response. Mechanistically, we found a strong activation of ERK in lung tissues by VILI, which was prevented by APC, suggestive of pathogenetic involvement of the Mitogen-Activated Kinase pathway. In cultured human lung epithelial cells challenged by thrombin, APC abrogated the activation of ERK and its downstream effector, cytosolic Phospholipase A(2). Conclusions: Topical application of APC by inhalation may effectively reduce lung injury induced by mechanical ventilation in mice.Critical Car
Preservation of microvascular barrier function requires CD31 receptor-induced metabolic reprogramming
Endothelial barrier (EB) breaching is a frequent event during inflammation, and it is followed by the rapid recovery of microvascular integrity. The molecular mechanisms of EB recovery are poorly understood. Triggering of MHC molecules by migrating T-cells is a minimal signal capable of inducing endothelial contraction and transient microvascular leakage. Using this model, we show that EB recovery requires a CD31 receptor-induced, robust glycolytic response sustaining junction re-annealing. Mechanistically, this response involves src-homology phosphatase activation leading to Akt-mediated nuclear exclusion of FoxO1 and concomitant \u3b2-catenin translocation to the nucleus, collectively leading to cMyc transcription. CD31 signals also sustain mitochondrial respiration, however this pathway does not contribute to junction remodeling. We further show that pathologic microvascular leakage in CD31-deficient mice can be corrected by enhancing the glycolytic flux via pharmacological Akt or AMPK activation, thus providing a molecular platform for the therapeutic control of EB response
ID: 124: ABL FAMILY KINASES MEDIATE LUNG VASCULAR PERMEABILITY AND INFLAMMATION IN ACUTE LUNG INJURY
High-throughput quantification of selenium in individual serum proteins from a healthy human population using HPLC on-line with isotope dilution inductively coupled plasma-MS
In this study, a method, based on dual column affinity chromatography hyphenated to isotope dilution inductively coupled plasma-quadrupole MS, was developed for selenium determination in selenoprotein P, glutathione peroxidase, and selenoalbumin in human serum samples from a group of healthy volunteers (n = 399). Method improvement was achieved using methanol-enhanced isotope dilution which resulted in improved sensitivity and removal of isobaric interferences. Although no human serum reference materials are currently certified for their selenium species levels, method development was conducted using human serum reference material BCR 637 and 639 as their Se species content has been reported in the previous studies, and thus comparisons were possible. The mean selenium concentrations determined for the 399 healthy volunteer serum samples were 23 ± 10 ng Se mL-1 for glutathione peroxidase, 49 ± 15 ng Se mL-1 for selenoprotein P and 11 ± 4 ng Se mL-1 for selenoalbumin. These values are found to be in close agreement with published values for a limited number of healthy volunteer samples, and to establish baseline Se levels in serum proteins for an apparently healthy group of individuals, thus allowing for subsequent comparisons with respective values determined for groups of individuals with selenium related health issues, as well as assist in the discovery of potential selenium biomarkers. Also, the relationship between Se serum protein levels and some anthropometric characteristics of the volunteer population were investigated. Additionally, further development of the analytical method used in this study was achieved by adding a size exclusion chromatography column after the two affinity columns via a switching valve. This allowed for the separation of small selenium-containing molecules from glutathione peroxidase and thus enhanced the overall confidence in its identification. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA
Dietary habits of Greek adults and serum total selenium concentration: the ATTICA study
Cortactin modulates lung endothelial apoptosis induced by cigarette smoke
Cigarette smoke (CS) is the primary cause of Chronic Obstructive Pulmonary Disease (COPD), and an important pathophysiologic event in COPD is CS-induced apoptosis in lung endothelial cells (EC). Cortactin (CTTN) is a cytoskeletal actin-binding regulatory protein with modulation by Src-mediated tyrosine phosphorylation. Based upon data demonstrating reduced CTTN mRNA levels in the lungs of smokers compared to non-smokers, we hypothesized a functional role for CTTN in CS-induced mitochondrial ROS generation and apoptosis in lung EC. Exposure of cultured human lung EC to CS condensate (CSC) led to the rearrangement of the actin cytoskeleton and increased CTTN tyrosine phosphorylation (within hours). Exposure to CS significantly increased EC mitochondrial ROS generation and EC apoptosis. The functional role of CTTN in these CSC-induced EC responses was explored using cortactin siRNA to reduce its expression, and by using a blocking peptide for the CTTN SH3 domain, which is critical to cytoskeletal interactions. CTTN siRNA or blockade of its SH3 domain resulted in significantly increased EC mitochondrial ROS and apoptosis and augmented CSC-induced effects. Exposure of lung EC to e-cigarette condensate demonstrated similar results, with CTTN siRNA or SH3 domain blocking peptide increasing lung EC apoptosis. These data demonstrate a novel role for CTTN in modulating lung EC apoptosis induced by CS or e-cigarettes potentially providing new insights into COPD pathogenesis. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
- …
