264 research outputs found

    Automatic determination of Greulich and Pyle bone age in healthy Dutch children

    Get PDF
    Background: Bone age (BA) assessment is a routine procedure in paediatric radiology, for which the Greulich and Pyle (GP) atlas is mostly used. There is rater variability, but the advent of automatic BA determination eliminates this. Objective: To validate the BoneXpert method for automatic determination of skeletal maturity of healthy children against manual GP BA ratings. Materials and methods: Two observers determined GP BA with knowledge of the chronological age (CA). A total of 226 boys with a BA of 3-17 years and 179 girls with a BA of 3-15 years were included in the study. BoneXpert's estimate of GP BA was calibrated to agree on average with the manual ratings based on several studies, including the present study. Results: Seven subjects showed a deviation between manual and automatic BA in excess of 1.9 years. They were re-rated blindly by two raters. After correcting these seven ratings, the root mean square error between manual and automatic rating in the 405 subjects was 0.71 years (range 0.66-0.76 years, 95% CI). BoneXpert's GP BA is on average 0.28 and 0.20 years behind the CA for boys and girls, respectively. Conclusion: BoneXpert is a robust method for automatic determination of BA

    In Vivo Measurement of Cerebral Mitochondrial Metabolism Using Broadband Near Infrared Spectroscopy Following Neonatal Stroke

    Get PDF
    Neonatal stroke presents with features of encephalopathy and can result in significant morbidity and mortality. We investigated the cerebral metabolic and haemodynamic changes following neonatal stroke in a term infant at 24 h of life. Changes in oxidation state of cytochrome-c-oxidase (oxCCO) concentration were monitored along with changes in oxy- and deoxy- haemoglobin using a new broadband near-infrared spectroscopy (NIRS) system. Repeated transient changes in cerebral haemodynamics and metabolism were noted over a 3-h study period with decrease in oxyhaemoglobin (HbO2), deoxy haemoglobin (HHb) and oxCCO in both cerebral hemispheres without significant changes in systemic observations. A clear asymmetry was noted in the degree of change between the two cerebral hemispheres. Changes in cerebral oxygenation (measured as HbDiff=HbO2-HHb) and cerebral metabolism (measured as oxCCO) were highly coupled on the injured side of the brain

    Combined cardiological and neurological abnormalities due to filamin A gene mutation

    Get PDF
    Background: Cardiac defects can be the presenting symptom in patients with mutations in the X-linked gene FLNA. Dysfunction of this gene is associated with cardiac abnormalities, especially in the left ventricular outflow tract, but can also cause a congenital malformation of the cerebral cortex. We noticed that some patients diagnosed at the neurogenetics clinic had first presented to a cardiologist, suggesting that earlier recognition may be possible if the diagnosis is suspected. Methods and results: From the Erasmus MC cerebral malformations database 24 patients were identified with cerebral bilateral periventricular nodular heterotopia (PNH) without other cerebral cortical malformations. In six of these patients, a pathogenic mutation in FLNA was present. In five a cardiac defect was also found in the outflow tract. Four had presented to a cardiologist before the cerebral abnormalities were diagnosed. Conclusions: The cardiological phenotype typically consists of aortic or mitral regurgitation, coarctation of the aorta or other left-sided cardiac malformations. Most patients in this category will not have a FLNA mutation, but the presence of neurological complaints, hyperlaxity of the skin or joints and/or a family history with similar cardiac or neurological problems in a possibly X-linked pattern may alert the clinician to the possibility of a FLNA mutation

    Integrating Technical Standards into ET Curricula to Meet ABET Standards and Industry Needs

    Get PDF
    With technical standards affecting nearly every aspect of our daily lives, from computers to the components and materials used in car engines, it is critical that undergraduate students are educated on the importance of standards and provided with opportunities to locate and apply relevant technical standards to real world situations. In addition, with ABET accreditation requiring students to have a “basic understanding and familiarity with,” and experience “using” codes and standards, faculty need to consider how such material can be naturally integrated into the curriculum. At Purdue University, education about codes and standards has been integrated into the mechanical engineering technology (MET) curriculum for decades with significant success. This paper discusses how standards are incorporated into mechanical design and quality control courses, as well as strategies for integrating standards into more courses in an MET curriculum. In addition, a discussion of standards resources that are freely available is included. Finally, a call to action for industry is presented, explaining the need and potential areas where industry can increase involvement in teaching students about technical standards

    The mammillary bodies: a review of causes of injury in infants and children

    Get PDF
    SUMMARY: Despite their small size, the mammillary bodies play an important role in supporting recollective memory. However, they have typically been overlooked when assessing neurologic conditions that present with memory impairment. While there is increasing evidence of mammillary body involvement in a wide range of neurologic disorders in adults, very little attention has been given to infants and children. Literature searches of PubMed and EMBASE were performed to identify articles that describe mammillary body pathology on brain MR imaging in children. Mammillary body pathology is present in the pediatric population in several conditions, indicated by signal change and/or atrophy on MR imaging. The main causes of mammillary body pathology are thiamine deficiency, hypoxia-ischemia, direct damage due to masses or hydrocephalus, or deafferentation resulting from pathology within the wider Papez circuit. Optimizing scanning protocols and assessing mammillary body status as a standard procedure are critical, given their role in memory processes

    In-depth characterization of neuroradiological findings in a large sample of individuals with autism spectrum disorder and controls

    Get PDF
    Background: Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions associated with quantitative differences in cortical and subcortical brain morphometry. Qualitative assessment of brain morphology provides complementary information on the possible underlying neurobiology. Studies of neuroradiological findings in ASD have rendered mixed results, and await robust replication in a sizable and independent sample. Methods: We systematically and comprehensively assessed neuroradiological findings in a large cohort of participants with ASD and age-matched controls (total N = 620, 348 ASD and 272 controls), including 70 participants with intellectual disability (47 ASD, 23 controls). We developed a comprehensive scoring system, augmented by standardized biometric measures. Results: There was a higher incidence of neuroradiological findings in individuals with ASD (89.4 %) compared to controls (83.8 %, p = .042). Certain findings were also more common in ASD, in particular opercular abnormalities (OR 1.9, 95 % CI 1.3–3.6) and mega cisterna magna (OR 2.4, 95 % CI 1.4–4.0) reached significance when using FDR, whereas increases in macrocephaly (OR 2.0, 95 % CI 1.2–3.2), cranial deformities (OR 2.4, 95 % CI: 1.0–5.8), calvarian / dural thickening (OR 1.5, 95 % CI 1.0–2.3), ventriculomegaly (OR 3.4, 95 % CI 1.3–9.2), and hypoplasia of the corpus callosum (OR 2.7, 95 % CI 1.1–6.3) did not survive this correction. Furthermore, neuroradiological findings were more likely to occur in isolation in controls, whereas they clustered more frequently in ASD. The incidence of neuroradiological findings was higher in individuals with mild intellectual disability (95.7 %), irrespective of ASD diagnosis. Conclusion: There was a subtly higher prevalence of neuroradiological findings in ASD, which did not appear to be specific to the condition. Individual findings or clusters of findings may point towards the neurodevelopmental mechanisms involved in individual cases. As such, clinical MRI assessments may be useful to guide further etiopathological (genetic) investigations, and are potentially valuable to fundamental ASD research

    A systematic review on the use of quantitative imaging to detect cancer therapy adverse effects in normal-appearing brain tissue

    Get PDF
    Cancer therapy for both central nervous system (CNS) and non-CNS tumors has been previously associated with transient and long-term cognitive deterioration, commonly referred to as ‘chemo fog’. This therapy-related damage to otherwise normal-appearing brain tissue is reported using post-mortem neuropathological analysis. Although the literature on monitoring therapy effects on structural magnetic resonance imaging (MRI) is well established, such macroscopic structural changes appear relatively late and irreversible. Early quantitative MRI biomarkers of therapy-induced damage would potentially permit taking these treatment side effects into account, paving the way towards a more personalized treatment planning. This systematic review (PROSPERO number 224196) provides an overview of quantitative tomographic imaging methods, potentially identifying the adverse side effects of cancer therapy in normal-appearing brain tissue. Seventy studies were obtained from the MEDLINE and Web of Science databases. Studies reporting changes in normal-appearing brain tissue using MRI, PET, or SPECT quantitative biomarkers, related to radio-, chemo-, immuno-, or hormone therapy for any kind of solid, cystic, or liquid tumor were included. The main findings of the reviewed studies were summarized, providing also the risk of bias of each study assessed using a modified QUADAS-2 tool. For each imaging method, this review provides the methodological background, and the benefits and shortcomings of each method from the imaging perspective. Finally, a set of recommendations is proposed to support future research

    Modelling growth curves of the normal infant's mandible: 3D measurements using computed tomography

    Get PDF
    Objectives Data on normal mandibular development in the infant is lacking though essential to understand normal growth patterns and to discriminate abnormal growth. The aim of this study was to provide normal linear measurements of the mandible using computed tomography performed in infants from 0 to 2 years of age. Material and methods 3D voxel software was used to calculate mandibular body length, mandibular ramus length, bicondylar width, bigonial width and the gonial angle. Intra- and inter-rater reliability was assessed for these measurements. They were found to be sufficient for all distances; intra-class correlation coefficients were all above 0.9. Regression analysis for growth modelling was performed. Results In this multi-centre retrospective study, 109 CT scans were found eligible that were performed for various reasons (e.g. trauma, craniosynostosis, craniofacial abscesses). Craniosynostosis patients had larger mandibular measurements compared to non-craniosynostosis patients and were therefore excluded. Fifty-one CT scans were analysed. Conclusions Analysis showed that the mandible increases more in size vertically (the mandibular ramus) than horizontally (the mandibular body). Most of the mandibular growth occurs in the first 6 months.Development and application of statistical models for medical scientific researc
    corecore