2,053 research outputs found

    Improving the spatial resolution by effective subtraction technique at Irkutsk incoherent scatter radar: the theory and experiment

    Full text link
    We describe a sounding technique that allows us to improve spatial resolution of Irkutsk Incoherent Scatter Radar without loosing spectral resolution. The technique is based on transmitting of rectangle pulses of different duration in various sounding runs and subtracting correlation matrixes. Theoretically and experimentally we have shown, that subtraction of the mean-square parameters of the scattered signal for different kinds of the sounding signal one from another allows us to solve the problem within the framework of quasi-static ionospheric parameters approximation.Comment: 4 pages, 3 figures, to appear at URSI-2011 conferenc

    Coulomb blockade and Bloch oscillations in superconducting Ti nanowires

    Full text link
    Quantum fluctuations in quasi-one-dimensional superconducting channels leading to spontaneous changes of the phase of the order parameter by 2π2\pi, alternatively called quantum phase slips (QPS), manifest themselves as the finite resistance well below the critical temperature of thin superconducting nanowires and the suppression of persistent currents in tiny superconducting nanorings. Here we report the experimental evidence that in a current-biased superconducting nanowire the same QPS process is responsible for the insulating state -- the Coulomb blockade. When exposed to RF radiation, the internal Bloch oscillations can be synchronized with the external RF drive leading to formation of quantized current steps on the I-V characteristic. The effects originate from the fundamental quantum duality of a Josephson junction and a superconducting nanowire governed by QPS -- the QPS junction (QPSJ).Comment: 5 pages, 4 figure

    Superconducting MoSi nanowires

    Full text link
    We have fabricated disordered superconducting nanowires of molybdenium silicide. A molybdenium nanowire is first deposited on top of silicon, and the alloy is formed by rapid thermal annealing. The method allows tuning of the crystal growth to optimise, e.g., the resistivity of the alloy for potential applications in quantum phase slip devices and superconducting nanowire single-photon detectors. The wires have effective diameters from 42 to 79 nm, enabling the observation of crossover from conventional superconductivity to regimes affected by thermal and quantum fluctuations. In the smallest diameter wire and at temperatures well below the superconducting critical temperature, we observe residual resistance and negative magnetoresistance, which can be considered as fingerprints of quantum phase slips

    Effect of Multiple Scattering on the Critical Electric Field for Runaway Electrons in the Atmosphere

    Full text link
    A simple method for taking into account the multiple Coulomb scattering in construction of a separatrix (the line separating the regions of runaway and decelerating electrons in an electric field) is described. The desired line is obtained by solving a simple transcendental equation.Comment: 3 pages, 2 figure

    The Spectral Energy Distribution of Self-gravitating Interstellar Clouds I. Spheres

    Full text link
    We derive the spectral energy distribution (SED) of dusty, isothermal, self gravitating, stable and spherical clouds externally heated by the ambient interstellar radiation field. For a given radiation field and dust properties, the radiative transfer problem is determined by the pressure of the surrounding medium and the cloud mass expressed as a fraction of the maximum stable cloud mass above which the clouds become gravitational unstable. To solve the radiative transfer problem a ray-tracing code is used to accurately derive the light distribution inside the cloud. This code considers both non isotropic scattering on dust grains and multiple scattering events. The dust properties inside the clouds are assumed to be the same as in the diffuse interstellar medium in our galaxy. We analyse the effect of the pressure, the critical mass fraction, and the ISRF on the SED and present brightness profiles in the visible, the IR/FIR and the submm/mm regime with the focus on the scattered emission and the thermal emission from PAH-molecules and dust grains.Comment: accepted for publication in ApJS, May 2008, v176n1 issu

    Co-Expression Network Models Suggest that Stress Increases Tolerance to Mutations

    Get PDF
    Network models are a well established tool for studying the robustness of complex systems, including modelling the effect of loss of function mutations in protein interaction networks. Past work has concentrated on average damage caused by random node removal, with little attention to the shape of the damage distribution. In this work, we use fission yeast co-expression networks before and after exposure to stress to model the effect of stress on mutational robustness. We find that exposure to stress decreases the average damage from node removal, suggesting stress induces greater tolerance to loss of function mutations. The shape of the damage distribution is also changed upon stress, with a greater incidence of extreme damage after exposure to stress. We demonstrate that the change in shape of the damage distribution can have considerable functional consequences, highlighting the need to consider the damage distribution in addition to average behaviour

    A Corona Australis cloud filament seen in NIR scattered light II: Comparison with sub-millimeter data

    Full text link
    We study a northern part of the Corona Australis molecular cloud that consists of a filament and a dense sub-millimetre core inside the filament. Our aim is to measure dust temperature and sub-mm emissivity within the region. We also look for confirmation that near-infrared (NIR) surface brightness can be used to study the structure of even very dense clouds. We extend our previous NIR mapping south of the filament. The dust colour temperatures are estimated using Spitzer 160um and APEX/Laboca 870um maps. The column densities derived based on the reddening of background stars, NIR surface brightness, and thermal sub-mm dust emission are compared. A three dimensional toy model of the filament is used to study the effect of anisotropic illumination on near-infrared surface brightness and the reliability of dust temperature determination. Relative to visual extinction, the estimated emissivity at 870um is kappa(870) = (1.3 +- 0.4) x 10^{-5} 1/mag. This is similar to the values found in diffuse medium. A significant increase in the sub-millimetre emissivity seems to be excluded. In spite of saturation, NIR surface brightness was able to accurately pinpoint, and better than measurements of the colour excesses of background stars, the exact location of the column density maximum. Both near- and far-infrared data show that the intensity of the radiation field is higher south of the filament.Comment: 9 pages, 9 figures, accepted to A&

    Phase-coded pulse aperiodic transmitter coding

    Get PDF
    Both ionospheric and weather radar communities have already adopted the method of transmitting radar pulses in an aperiodic manner when measuring moderately overspread targets. Among the users of the ionospheric radars, this method is called Aperiodic Transmitter Coding (ATC), whereas the weather radar users have adopted the term Simultaneous Multiple Pulse-Repetition Frequency (SMPRF). When probing the ionosphere at the carrier frequencies of the EISCAT Incoherent Scatter Radar facilities, the range extent of the detectable target is typically of the order of one thousand kilometers – about seven milliseconds – whereas the characteristic correlation time of the scattered signal varies from a few milliseconds in the D-region to only tens of microseconds in the F-region. If one is interested in estimating the scattering autocorrelation function (ACF) at time lags shorter than the F-region correlation time, the D-region must be considered as a moderately overspread target, whereas the F-region is a severely overspread one. Given the technical restrictions of the radar hardware, a combination of ATC and phase-coded long pulses is advantageous for this kind of target. We evaluate such an experiment under infinitely low signal-to-noise ratio (SNR) conditions using lag profile inversion. In addition, a qualitative evaluation under high-SNR conditions is performed by analysing simulated data. The results show that an acceptable estimation accuracy and a very good lag resolution in the D-region can be achieved with a pulse length long enough for simultaneous E- and F-region measurements with a reasonable lag extent. The new experiment design is tested with the EISCAT Tromsø VHF (224 MHz) radar. An example of a full D/E/F-region ACF from the test run is shown at the end of the paper
    corecore