1,240 research outputs found

    Generalized wordlength patterns and strength

    Full text link
    Xu and Wu (2001) defined the \emph{generalized wordlength pattern} (A1,...,Ak)(A_1, ..., A_k) of an arbitrary fractional factorial design (or orthogonal array) on kk factors. They gave a coding-theoretic proof of the property that the design has strength tt if and only if A1=...=At=0A_1 = ... = A_t = 0. The quantities AiA_i are defined in terms of characters of cyclic groups, and so one might seek a direct character-theoretic proof of this result. We give such a proof, in which the specific group structure (such as cyclicity) plays essentially no role. Nonabelian groups can be used if the counting function of the design satisfies one assumption, as illustrated by a couple of examples

    Diagonal and Low-Rank Matrix Decompositions, Correlation Matrices, and Ellipsoid Fitting

    Get PDF
    In this paper we establish links between, and new results for, three problems that are not usually considered together. The first is a matrix decomposition problem that arises in areas such as statistical modeling and signal processing: given a matrix XX formed as the sum of an unknown diagonal matrix and an unknown low rank positive semidefinite matrix, decompose XX into these constituents. The second problem we consider is to determine the facial structure of the set of correlation matrices, a convex set also known as the elliptope. This convex body, and particularly its facial structure, plays a role in applications from combinatorial optimization to mathematical finance. The third problem is a basic geometric question: given points v1,v2,...,vnRkv_1,v_2,...,v_n\in \R^k (where n>kn > k) determine whether there is a centered ellipsoid passing \emph{exactly} through all of the points. We show that in a precise sense these three problems are equivalent. Furthermore we establish a simple sufficient condition on a subspace UU that ensures any positive semidefinite matrix LL with column space UU can be recovered from D+LD+L for any diagonal matrix DD using a convex optimization-based heuristic known as minimum trace factor analysis. This result leads to a new understanding of the structure of rank-deficient correlation matrices and a simple condition on a set of points that ensures there is a centered ellipsoid passing through them.Comment: 20 page

    Weighted complex projective 2-designs from bases: optimal state determination by orthogonal measurements

    Get PDF
    We introduce the problem of constructing weighted complex projective 2-designs from the union of a family of orthonormal bases. If the weight remains constant across elements of the same basis, then such designs can be interpreted as generalizations of complete sets of mutually unbiased bases, being equivalent whenever the design is composed of d+1 bases in dimension d. We show that, for the purpose of quantum state determination, these designs specify an optimal collection of orthogonal measurements. Using highly nonlinear functions on abelian groups, we construct explicit examples from d+2 orthonormal bases whenever d+1 is a prime power, covering dimensions d=6, 10, and 12, for example, where no complete sets of mutually unbiased bases have thus far been found.Comment: 28 pages, to appear in J. Math. Phy

    Inhomogeneously doped two-leg ladder systems

    Full text link
    A chemical potential difference between the legs of a two-leg ladder is found to be harmful for Cooper pairing. The instability of superconductivity in such systems is analyzed by compairing results of various analytical and numerical methods. Within a strong coupling approach for the t-J model, supplemented by exact numerical diagonalization, hole binding is found unstable beyond a finite, critical chemical potential difference. The spinon-holon mean field theory for the t-J model shows a clear reduction of the the BCS gaps upon increasing the chemical potential difference leading to a breakdown of superconductivity. Based on a renormalization group approach and Abelian bosonization, the doping dependent phase diagram for the weakly interacting Hubbard model with different chemical potentials was determined.Comment: Revtex4, 11 pages, 7 figure

    Fermi surface renormalization in Hubbard ladders

    Full text link
    We derive the one-loop renormalization equations for the shift in the Fermi-wavevectors for one-dimensional interacting models with four Fermi-points (two left and two right movers) and two Fermi velocities v_1 and v_2. We find the shift to be proportional to (v_1-v_2)U^2, where U is the Hubbard-U. Our results apply to the Hubbard ladder and to the t_1-t_2 Hubbard model. The Fermi-sea with fewer particles tends to empty. The stability of a saddle point due to shifts of the Fermi-energy and the shift of the Fermi-wavevector at the Mott-Hubbard transition are discussed.Comment: 5 pages, 4 Postscript figure

    Can programme theory be used as a 'translational tool’ to optimise health service delivery in a national early years’ initiative in Scotland: a case study

    Get PDF
    Background Theory-based evaluation (TBE) approaches are heralded as supporting formative evaluation by facilitating increased use of evaluative findings to guide programme improvement. It is essential that learning from programme implementation is better used to improve delivery and to inform other initiatives, if interventions are to be as effective as they have the potential to be. Nonetheless, few studies describe formative feedback methods, or report direct instrumental use of findings resulting from TBE. This paper uses the case of Scotland’s, National Health Service, early years’, oral health improvement initiative (Childsmile) to describe the use of TBE as a framework for providing feedback on delivery to programme staff and to assess its impact on programmatic action.<p></p> Methods In-depth, semi-structured interviews and focus groups with key stakeholders explored perceived deviations between the Childsmile programme 'as delivered’ and its Programme Theory (PT). The data was thematically analysed using constant comparative methods. Findings were shared with key programme stakeholders and discussions around likely impact and necessary actions were facilitated by the authors. Documentary review and ongoing observations of programme meetings were undertaken to assess the extent to which learning was acted upon.<p></p> Results On the whole, the activities documented in Childsmile’s PT were implemented as intended. This paper purposefully focuses on those activities where variation in delivery was evident. Differences resulted from the stage of roll-out reached and the flexibility given to individual NHS boards to tailor local implementation. Some adaptations were thought to have diverged from the central features of Childsmile’s PT, to the extent that there was a risk to achieving outcomes. The methods employed prompted national service improvement action, and proposals for local action by individual NHS boards to address this.<p></p> Conclusions The TBE approach provided a platform, to direct attention to areas of risk within a national health initiative, and to agree which intervention components were 'core’ to its hypothesised success. The study demonstrates that PT can be used as a 'translational tool’ to facilitate instrumental use of evaluative findings to optimise implementation within a complex health improvement programme.<p></p&gt

    Interaction-induced Fermi surface deformations in quasi one-dimensional electronic systems

    Full text link
    We consider serious conceptual problems with the application of standard perturbation theory, in its zero temperature version, to the computation of the dressed Fermi surface for an interacting electronic system. In order to overcome these difficulties, we set up a variational approach which is shown to be equivalent to the renormalized perturbation theory where the dressed Fermi surface is fixed by recursively computed counterterms. The physical picture that emerges is that couplings that are irrelevant tend to deform the Fermi surface in order to become more relevant (irrelevant couplings being those that do not exist at vanishing excitation energy because of kinematical constraints attached to the Fermi surface). These insights are incorporated in a renormalization group approach, which allows for a simple approximate computation of Fermi surface deformation in quasi one-dimensional electronic conductors. We also analyze flow equations for the effective couplings and quasiparticle weights. For systems away from half-filling, the flows show three regimes corresponding to a Luttinger liquid at high energies, a Fermi liquid, and a low-energy incommensurate spin-density wave. At half-filling Umklapp processes allow for a Mott insulator regime where the dressed Fermi surface is flat, implying a confined phase with vanishing effective transverse single-particle coherence. The boundary between the confined and Fermi liquid phases is found to occur for a bare transverse hopping amplitude of the order of the Mott charge gap of a single chain.Comment: 38 pages, 39 figures. Accepted for publication in Phys. Rev.

    From nodal liquid to nodal Mottness in a frustrated Hubbard model

    Full text link
    We investigate the physics of frustrated 3-leg Hubbard ladders in the band limit, when hopping across the ladder's rungs (t_{\perp}) is of the same order as hopping along them (t) much greater than the onsite Coulomb repulsion (U). We show that this model exhibits a striking electron-hole asymmetry close to half-filling: the hole-doped system at low temperatures develops a Resonating Valence Bond (RVB)-like d-wave gap (pseudogap close to (π\pi,0)) coinciding with gapless nodal excitations (nodal liquid); in contrast, the electron-doped system is seen to develop a Mott gap at the nodes, whilst retaining a metallic character of its majority Fermi surface. At lower temperatures in the electron-doped case, d-wave superconducting correlations -- here, coexisting with gapped nodal excitations -- are already seen to arise. Upon further doping the hole-doped case, the RVB-like state yields to d-wave superconductivity. Such physics is reminiscent of that exhibited by the high temperature cuprate superconductors--notably electron-hole asymmetry as noted by Angle Resolved PhotoEmission Spectroscopy (ARPES) and the resistivity exponents observed. This toy model also reinforces the importance of a more thorough experimental investigation of the known 3-leg ladder cuprate systems, and may have some bearing on low dimensional organic superconductors.Comment: 26 pages, 16 figure

    Successive opening of the Fermi surface in doped N-leg Hubbard ladders

    Full text link
    We study the effect of doping away from half-filling in weakly (but finitely) interacting N-leg Hubbard ladders using renormalization group and bosonization techniques. For a small on-site repulsion U, the N-leg Hubbard ladders are equivalent to a N-band model, where at half-filling the Fermi velocities are v_{1}=v_{N}<v_{2}=v_{N-1}<... We then obtain a hierarchy of energy-scales, where the band pairs (j,N+1-j) are successively frozen out. The low-energy Hamiltonian is then the sum of N/2 (or (N-1)/2 for N odd) two-leg ladder Hamiltonians without gapless excitations (plus a single chain for N odd with one gapless spin mode), similar to the N-leg Heisenberg spin-ladders. The energy-scales lead to a hierarchy of gaps. Upon doping away from half-filling, the holes enter first the band(s) with the smallest gap: For odd N, the holes enter first the nonbonding band (N+1)/2 and the phase is a Luttinger liquid, while for even N, the holes enter first the band pair (N/2,N/2+1) and the phase is a Luther-Emery liquid, similar to numerical treatments of the t-J model, i.e., at and close to half-filling, the phases of the Hubbard ladders for small and large U are the same. For increasing doping, hole-pairs subsequently enter at critical dopings the other band pairs (j,N+1-j) (accompanied by a diverging compressibility): The Fermi surface is successively opened by doping, starting near the wave vector (pi/2,pi/2). Explicit calculations are given for the cases N=3,4.Comment: 10 pages, 4 figures, to be published in Phys. Rev.
    corecore