481 research outputs found

    Beam Intensity and Energy Control for the SPIRAL2 Facility

    Get PDF
    TUPB029 - ISBN 878-3-95450-122-9International audienceThe first part of the SPIRAL2 facility, which entered last year in the construction phase at GANIL in France, consists of an ion source, a deuteron and a proton source, a RFQ and a superconducting linear accelerator delivering high intensities, up to 5 mA and 40 MeV for the deuteron beams. Diagnostic developments have been done to control both beam intensity and energy by non-interceptive methods at the linac exit. The beam current is measured by using couples of ACCT-DCCT installed along the lines and the beam energy by using a time of flight device. This paper gives explanations about the technical solutions, the results and resolutions for measuring and controlling the beam

    Measurement and Control of the Beam Energy for the SPIRAL2 Accelerator

    Get PDF
    WEPF32, http://accelconf.web.cern.ch/AccelConf/ibic2013/International audienceThe first part of the SPIRAL2 facility, which entered last year in the construction phase at GANIL in France, will be composed of an ion source, a deuteron/proton source, a RFQ and a superconducting linear accelerator delivering high intensities, up to 5 mA and 40MeV for the deuteron beams. As part of theMEBT commissioning, the beam energy will be measured on the BTI (Bench of Intermediate Test) at the exit of the RFQ. At the exit of the LINAC, the system has to measure but also control the beam energy. The control consists in ensuring that the beam energy is under a limit by taking account of the measurement uncertainty. The energy is measured by a method of time of flight, the signal is captured by non-intercepting capacitive pick-ups. This paper presents also the results obtained in terms of uncertainties and dynamics of measures

    Instability and stability properties of traveling waves for the double dispersion equation

    Get PDF
    In this article we are concerned with the instability and stability properties of traveling wave solutions of the double dispersion equation  uttuxx+auxxxxbuxxtt=(up1u)xx ~u_{tt} -u_{xx}+a u_{xxxx}-bu_{xxtt} = - (|u|^{p-1}u)_{xx}~ for  p>1~p>1,  ab>0~a\geq b>0. The main characteristic of this equation is the existence of two sources of dispersion, characterized by the terms uxxxxu_{xxxx} and uxxttu_{xxtt}. We obtain an explicit condition in terms of aa, bb and pp on wave velocities ensuring that traveling wave solutions of the double dispersion equation are strongly unstable by blow up. In the special case of the Boussinesq equation (b=0b=0), our condition reduces to the one given in the literature. For the double dispersion equation, we also investigate orbital stability of traveling waves by considering the convexity of a scalar function. We provide both analytical and numerical results on the variation of the stability region of wave velocities with aa, bb and pp and then state explicitly the conditions under which the traveling waves are orbitally stable.Comment: 16 pages, 4 figure

    Configuration mixing in 188^{188}Pb : band structure and electromagnetic properties

    Full text link
    In the present paper, we carry out a detailed analysis of the presence and mixing of various families of collective bands in 188^{188}Pb. Making use of the interacting boson model, we construct a particular intermediate basis that can be associated with the unperturbed bands used in more phenomenological studies. We use the E2 decay to construct a set of collective bands and discuss in detail the B(E2)-values. We also perform an analysis of these theoretical results (Q, B(E2)) to deduce an intrinsic quadrupole moment and the associated quadrupole deformation parameter, using an axially deformed rotor model.Comment: submitted to pr

    Progress on the Beam Energy Monitor for the SPIRAL2 Accelerator.

    Get PDF
    WEPF29, posterInternational audienceThe first part of the SPIRAL2 project entered last year in the end of the construction phase at GANIL in France. The facility will be composed by an ion source, a deuteron/proton source, a RFQ and a superconducting linear accelerator. The driver is planned to accelerate high intensities, up to 5 mA and 40 MeV for the deuteron beams. A monitoring system was built to measure the beam energy on the BTI line (Bench of Intermediate Test) at the exit of the RFQ. As part of theMEBT commissioning, the beamenergy will be measured on the BTI with an Epics monitoring application. At the exit of the LINAC, another system will have to measure and control the beam energy. The control consists in ensuring that the beam energy stays under a limit by taking account of the measurement uncertainty. The energy is measured by a method of time of flight; the signal is captured by non-intercepting capacitive pick-ups. This paper describes the BTI monitor interface and presents the system evolution following the design review

    Analytic theory of narrow lattice solitons

    Full text link
    The profiles of narrow lattice solitons are calculated analytically using perturbation analysis. A stability analysis shows that solitons centered at a lattice (potential) maximum are unstable, as they drift toward the nearest lattice minimum. This instability can, however, be so weak that the soliton is ``mathematically unstable'' but ``physically stable''. Stability of solitons centered at a lattice minimum depends on the dimension of the problem and on the nonlinearity. In the subcritical and supercritical cases, the lattice does not affect the stability, leaving the solitons stable and unstable, respectively. In contrast, in the critical case (e.g., a cubic nonlinearity in two transverse dimensions), the lattice stabilizes the (previously unstable) solitons. The stability in this case can be so weak, however, that the soliton is ``mathematically stable'' but ``physically unstable''

    Sensory profiles and preference analysis in ornamental horticulture: The case of the rosebush

    Get PDF
    The context of ornamental horticulture is considered in order to extend the techniques of sensory and preference evaluation by taking the rosebush as a plant model. In a preliminary study (Boumaza, Demotes-Mainard, Huché-Thélier, & Guérin, 2009), a sensory evaluation was conducted in order to set up a list of attributes. Subsequently, this list was adapted to assess 10 rosebushes. After the control of the panel performance using a multivariate strategy of analysis, the average scores were used in product mapping. The evaluation of the preferences with regard to these rosebushes was undertaken: 253 subjects were asked to rank the products by decreasing order of liking. Thereafter, the preference data were subjected to an internal preference mapping and a cluster analysis. Six homogeneous segments of consumers were eventually retained. By way of performing an external preference mapping, the average ranks were regressed upon the sensory attributes using principal component regression: the preferences of 67% of the consumers were satisfactorily explained by the attributes

    The Air Microwave Yield (AMY) experiment - A laboratory measurement of the microwave emission from extensive air showers

    Full text link
    The AMY experiment aims to measure the microwave bremsstrahlung radiation (MBR) emitted by air-showers secondary electrons accelerating in collisions with neutral molecules of the atmosphere. The measurements are performed using a beam of 510 MeV electrons at the Beam Test Facility (BTF) of Frascati INFN National Laboratories. The goal of the AMY experiment is to measure in laboratory conditions the yield and the spectrum of the GHz emission in the frequency range between 1 and 20 GHz. The final purpose is to characterise the process to be used in a next generation detectors of ultra-high energy cosmic rays. A description of the experimental setup and the first results are presented.Comment: 3 pages -- EPS-HEP'13 European Physical Society Conference on High Energy Physics (July, 18-24, 2013) at Stockholm, Swede
    corecore