150 research outputs found

    Giant Intradural Mucocele in a Patient with Adult Onset Seizures

    Get PDF
    A rare case of mucopyocele in a patient who presented with epileptic seizures is reported. The computed tomography scan (CT) and the magnetic resonance (MR) imaging revealed an intradural extension of a giant fronto-ethmoidal mucopyocele, eroding the cribriform plate and compressing both frontal lobes. The lesion was removed by craniotomy with elimination of the mass effect and reconstruction of the anterior skull base. An intracranial-intradural mucopyocele is an extremely rare cause of generalized convulsion as a presenting symptom, with only 6 cases reported in the literature. The total removal of the lesion associated with anterior fossa reconstruction is the treatment of choice

    Effects of electrical stimulation of dorsal raphe nucleus on neuronal response properties of barrel cortex layer IV neurons following long-term sensory deprivation

    Get PDF
    Abstract: Objective To evaluate the effect of electrical stimulation of dorsal raphe nucleus (DRN) on response properties of layer IV barrel cortex neurons following long-term sensory deprivation. Methods: Male Wistar rats were divided into sensory-deprived (SD) and control (unplucked) groups. In SD group, all vibrissae except the D2 vibrissa were plucked on postnatal day one, and kept plucked for a period of 60 d. After that, whisker regrowth was allowed for 8-10 d. The D2 principal whisker (PW) and the D1 adjacent whisker (AW) were either deflected singly or both deflected in a serial order that the AW was deflected 20 ms before PW deflection for assessing lateral inhibition, and neuronal responses were recorded from layer IV of the D2 barrel cortex. DRN was electrically stimulated at inter-stimulus intervals (ISIs) ranging from 0 to 800 ms before whisker deflection. Results: PW-evoked responses increased in the SD group with DRN electrical stimulation at ISIs of 50 ms and 100 ms, whereas AW-evoked responses increased at ISI of 800 ms in both groups. Whisker plucking before DRN stimulation could enhance the responsiveness of barrel cortex neurons to PW deflection and decrease the responsiveness to AW deflection. DRN electrical stimulation significantly reduced this difference only in PW-evoked responses between groups. Besides, no DRN stimulation-related changes in response latency were observed following PW or AW deflection in either group. Moreover, condition test (CT) ratio increased in SD rats, while DRN stimulation did not affect the CT ratio in either group. There was no obvious change in 5-HT2A receptor protein density in barrel cortex between SD and control groups. Conclusion: These results suggest that DRN electrical stimulation can modulate information processing in the SD barrel cortex

    Parathyroid autotransplantation in extensive head and neck resections: case series report

    Get PDF
    Permanent or temporary hypoparathyroidism may be a debilitating result of radical cervical surgery, as noted most commonly following thyroid or parathyroid surgery. However, it can also be the outcome of any surgical procedure involving bilateral extensive manipulation of the anterior neck triangle, especially in order to ensure oncologically adequate surgical margins

    Use of the ODD-Luciferase Transgene for the Non-Invasive Imaging of Spontaneous Tumors in Mice

    Get PDF
    In humans, imaging of tumors provides rapid, accurate assessment of tumor growth and location. In laboratory animals, however, the imaging of spontaneously occurring tumors continues to pose many technical and logistical problems. Recently a mouse model was generated in which a chimeric protein consisting of HIF-1α oxygen-dependent degradation domain (ODD) fused to luciferase was ubiquitously expressed in all tissues. Hypoxic stress leads to the accumulation of ODD-luciferase in the tissues of this mouse model which can be identified by non-invasive bioluminescence measurement. Since solid tumors often contain hypoxic regions, we performed proof-of-principle experiments testing whether this transgenic mouse model may be used as a universal platform for non-invasive imaging analysis of spontaneous solid tumors.ODD-luciferase transgenic mice were bred with MMTV-neu/beclin1+/- mice. Upon injection of luciferin, bioluminescent background of normal tissues in the transgenic mice and bioluminescent signals from spontaneously mammary carcinomas were measured non-invasively with an IVIS Spectrum imaging station. Tumor volumes were measured manually and the histology of tumor tissues was analyzed.Our results show that spontaneous mammary tumors in ODD-luciferase transgenic mice generate substantial bioluminescent signals, which are clearly discernable from background tissue luminescence. Moreover, we demonstrate a strong quantitative correlation between the bioluminescent tumor contour and the volume of palpable tumors. We further demonstrate that shrinkage of the volume of spontaneous tumors in response to chemotherapeutic treatment can be determined quantitatively using this system. Finally, we show that the growth and development of spontaneous tumors can be monitored longitudinally over several weeks. Thus, our results suggest that this model could potentially provide a practical, reliable, and cost-effective non-invasive quantitative method for imaging spontaneous solid tumors in mice

    Human Ovarian Tumor Cells Escape γδ T Cell Recognition Partly by Down Regulating Surface Expression of MICA and Limiting Cell Cycle Related Molecules

    Get PDF
    Background: Mechanisms of human Vc2Vd2 T cell-mediated tumor immunity have yet to be fully elucidated. Methods and Findings: At least some tumor cell recognition is mediated by NKG2D-MICA interactions. Herein, by using MTT assay and PI-BrdU co-staining and Western-blot, we show that these Vc2Vd2 T cells can limit the proliferation of ovarian tumor cells by down regulation of apoptosis and cell cycle related molecules in tumor cells. Cell-to-cell contact is critical. cd T cell-resistant, but not susceptible ovarian tumor cells escape cd T cell-mediated immune recognition by up-regulating pErk1/2, thereby decreasing surface MICA levels. Erk1/2 inhibitor pretreatment or incubation prevents this MICA decrease, while up-regulating key cell cycle related molecules such as CDK2, CDK4 and Cyclin D1, as well as apoptosis related molecules making resistant tumor cells now vulnerable to cd T cell-mediated lysis. Conclusion: These findings demonstrate novel effects of cdT cells on ovarian tumor cells

    Phylogeography of Aegean green toads (Bufo viridis subgroup): continental hybrid swarm vs. insular diversification with discovery of a new island endemic

    Get PDF
    BACKGROUND: Debated aspects in speciation research concern the amount of gene flow between incipient species under secondary contact and the modes by which post-zygotic isolation accumulates. Secondary contact zones of allopatric lineages, involving varying levels of divergence, provide natural settings for comparative studies, for which the Aegean (Eastern Mediterranean) geography offers unique scenarios. In Palearctic green toads (Bufo viridis subgroup or Bufotes), Plio-Pleistocene (~ 2.6 Mya) diverged species show a sharp transition without contemporary gene flow, while younger lineages, diverged in the Lower-Pleistocene (~ 1.9 Mya), admix over tens of kilometers. Here, we conducted a fine-scale multilocus phylogeographic analysis of continental and insular green toads from the Aegean, where a third pair of taxa, involving Mid-Pleistocene diverged (~ 1.5 Mya) mitochondrial lineages, earlier tentatively named viridis and variabilis, (co-)occurs. RESULTS: We discovered a new lineage, endemic to Naxos (Central Cyclades), while coastal islands and Crete feature weak genetic differentiation from the continent. In continental Greece, both lineages, viridis and variabilis, form a hybrid swarm, involving massive mitochondrial and nuclear admixture over hundreds of kilometers, without obvious selection against hybrids. CONCLUSIONS: The genetic signatures of insular Aegean toads appear governed by bathymetry and Quaternary sea level changes, resulting in long-term isolation (Central Cyclades: Naxos) and recent land-bridges (coastal islands). Conversely, Crete has been isolated since the end of the Messinian salinity crisis (5.3 My) and Cretan populations thus likely result from human-mediated colonization, at least since Antiquity, from Peloponnese and Anatolia. Comparisons of green toad hybrid zones support the idea that post-zygotic hybrid incompatibilities accumulate gradually over the genome. In this radiation, only one million years of divergence separate a scenario of complete reproductive isolation, from a secondary contact resulting in near panmixia

    Neural Computation via Neural Geometry: A Place Code for Inter-whisker Timing in the Barrel Cortex?

    Get PDF
    The place theory proposed by Jeffress (1948) is still the dominant model of how the brain represents the movement of sensory stimuli between sensory receptors. According to the place theory, delays in signalling between neurons, dependent on the distances between them, compensate for time differences in the stimulation of sensory receptors. Hence the location of neurons, activated by the coincident arrival of multiple signals, reports the stimulus movement velocity. Despite its generality, most evidence for the place theory has been provided by studies of the auditory system of auditory specialists like the barn owl, but in the study of mammalian auditory systems the evidence is inconclusive. We ask to what extent the somatosensory systems of tactile specialists like rats and mice use distance dependent delays between neurons to compute the motion of tactile stimuli between the facial whiskers (or ‘vibrissae’). We present a model in which synaptic inputs evoked by whisker deflections arrive at neurons in layer 2/3 (L2/3) somatosensory ‘barrel’ cortex at different times. The timing of synaptic inputs to each neuron depends on its location relative to sources of input in layer 4 (L4) that represent stimulation of each whisker. Constrained by the geometry and timing of projections from L4 to L2/3, the model can account for a range of experimentally measured responses to two-whisker stimuli. Consistent with that data, responses of model neurons located between the barrels to paired stimulation of two whiskers are greater than the sum of the responses to either whisker input alone. The model predicts that for neurons located closer to either barrel these supralinear responses are tuned for longer inter-whisker stimulation intervals, yielding a topographic map for the inter-whisker deflection interval across the surface of L2/3. This map constitutes a neural place code for the relative timing of sensory stimuli
    corecore