470 research outputs found

    Presunrise Heating of the Ambient Electrons in the Ionosphere Due to Conjugate Point Photoelectrons

    Get PDF
    Presunrise heating of ambient electrons in ionosphere due to conjugate point photoelectron

    Light-Cone Distribution Amplitudes of Light JPC=2−−J^{PC}=2^{--} Tensor Mesons in QCD

    Get PDF
    We present a study for two-quark light-cone distribution amplitudes for the 13D21^3D_2 light tensor meson states with quantum number JPC=2−−J^{PC}=2^{--}. Because of the G-parity, the chiral-even two-quark light-cone distribution amplitudes of this tensor meson are antisymmetric under the interchange of momentum fractions of the quark and antiquark in the SU(3) limit, while the chiral-odd ones are symmetric. The asymptotic leading-twist LCDAs with the strange quark mass correction are shown. We estimate the relevant parameters, the decay constants fTf_T and fT⊥f_T^\perp, and first Gegenbauer moment a1⊥a_1^\perp, by using the QCD sum rule method. These parameters play a central role in the investigation of BB meson decaying into the 2−−2^{--} tensor mesons.Comment: 18 pages, 3 Figure

    Light-Cone Distribution Amplitudes of Light JPC=2−−J^{PC}=2^{--} Tensor Mesons in QCD

    Get PDF
    We present a study for two-quark light-cone distribution amplitudes for the 13D21^3D_2 light tensor meson states with quantum number JPC=2−−J^{PC}=2^{--}. Because of the G-parity, the chiral-even two-quark light-cone distribution amplitudes of this tensor meson are antisymmetric under the interchange of momentum fractions of the quark and antiquark in the SU(3) limit, while the chiral-odd ones are symmetric. The asymptotic leading-twist LCDAs with the strange quark mass correction are shown. We estimate the relevant parameters, the decay constants fTf_T and fT⊥f_T^\perp, and first Gegenbauer moment a1⊥a_1^\perp, by using the QCD sum rule method. These parameters play a central role in the investigation of BB meson decaying into the 2−−2^{--} tensor mesons.Comment: 18 pages, 3 Figure

    Scheduling real-time, periodic jobs using imprecise results

    Get PDF
    A process is called a monotone process if the accuracy of its intermediate results is non-decreasing as more time is spent to obtain the result. The result produced by a monotone process upon its normal termination is the desired result; the error in this result is zero. External events such as timeouts or crashes may cause the process to terminate prematurely. If the intermediate result produced by the process upon its premature termination is saved and made available, the application may still find the result unusable and, hence, acceptable; such a result is said to be an imprecise one. The error in an imprecise result is nonzero. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. This problem differs from the traditional scheduling problems since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result. Consequently, the amounts of processor time assigned to tasks in a valid schedule can be less than the amounts of time required to complete the tasks. A meaningful formulation of this problem taking into account the quality of the overall result is discussed. Three algorithms for scheduling jobs for which the effects of errors in results produced in different periods are not cumulative are described, and their relative merits are evaluated

    Imprecise results: Utilizing partial computations in real-time systems

    Get PDF
    In real-time systems, a computation may not have time to complete its execution because of deadline requirements. In such cases, no result except the approximate results produced by the computations up to that point will be available. It is desirable to utilize these imprecise results if possible. Two approaches are proposed to enable computations to return imprecise results when executions cannot be completed normally. The milestone approach records results periodically, and if a deadline is reached, returns the last recorded result. The sieve approach demarcates sections of code which can be skipped if the time available is insufficient. By using these approaches, the system is able to produce imprecise results when deadlines are reached. The design of the Concord project is described which supports imprecise computations using these techniques. Also presented is a general model of imprecise computations using these techniques, as well as one which takes into account the influence of the environment, showing where the latter approach fits into this model

    Scheduling periodic jobs using imprecise results

    Get PDF
    One approach to avoid timing faults in hard, real-time systems is to make available intermediate, imprecise results produced by real-time processes. When a result of the desired quality cannot be produced in time, an imprecise result of acceptable quality produced before the deadline can be used. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. Since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result, the amount of processor time assigned to any task in a valid schedule can be less than the amount of time required to complete the task. A meaningful formulation of the scheduling problem must take into account the overall quality of the results. Depending on the different types of undesirable effects caused by errors, jobs are classified as type N or type C. For type N jobs, the effects of errors in results produced in different periods are not cumulative. A reasonable performance measure is the average error over all jobs. Three heuristic algorithms that lead to feasible schedules with small average errors are described. For type C jobs, the undesirable effects of errors produced in different periods are cumulative. Schedulability criteria of type C jobs are discussed

    PERTS: A Prototyping Environment for Real-Time Systems

    Get PDF
    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems

    Timing of Supplemental Feeding for Tilapia Production

    Full text link
    The staged addition of feed to fertilized fish ponds was evaluated by adding fertilizers to 15 ponds stocked with Nile tilapia Oreochromis niloticus , then adding feed at half ad libitum rates once fish in the ponds reached a target weight. Each pond was stocked with 750 fish (3 fish/m 2 ), and each treatment included three ponds with first feeding at (a) 50 g, (b) 100 g, (c) 150 g, (d) 200 g, and (e) 250 g. Ponds in Thailand (at the Ayutthaya Freshwater Fisheries Station, Royal Thai Department of Fisheries) were maintained for 236–328 d until the fish reached 500 g. Growth was similar for all treatments under fertilizer alone (1.17 g/d) and was also similar when feed was applied (3.1 g/d). Feed application rates averaged 1.17% BW/d, indicating substantial use of natural food. Pond water quality did not deteriorate under supplemental feeding. Feed conversion rates averaged 1.03. Multiple regression indicated that 73.8% of the variance in growth was explained by design variables (feed input and days), while 86.2% of the variance in growth was explained by adding dissolved oxygen content and alkalinity into the equation. The most efficient system was to grow fish to 100–150 g with fertilizers alone, then add feed. First adding feed (at 50% ad libitum) once fish reached 100 g produced the highest predicted annual revenues ($6,164 per hectare). Results of this experiment indicated that either critical standing crop occurred early (before the first fish sample) or did not occur at all in these ponds.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73113/1/j.1749-7345.1996.tb00625.x.pd

    Possible charge inhomogeneities in the CuO2 planes of YBa2Cu3O6+x (x=0.25, 0.45, 0.65, 0.94) from pulsed neutron diffraction

    Full text link
    The atomic pair distribution functions (PDF) of four powder samples of YBa2Cu3O6+x (x=0.25, 0.45, 0.65, 0.94) at 15 K have been measured by means of pulsed neutron diffraction. The PDF is modelled using a full-profile fitting approach to yield structural parameters. In contrast to earlier XAFS work we find no evidence of a split apical oxygen site. However, a slightly improved fit over the average crystallographic model results when the planar Cu(2) site is split along the z-direction. This is interpreted in terms of charge inhomogeneities in the CuO2 planes.Comment: 8 pages, 3 figure

    Neuroinflammation and white matter alterations in obesity assessed by Diffusion Basis Spectrum Imaging

    Get PDF
    Human obesity is associated with low-grade chronic systemic inflammation, alterations in brain structure and function, and cognitive impairment. Rodent models of obesity show that high-calorie diets cause brain inflammation (neuroinflammation) in multiple regions, including the hippocampus, and impairments in hippocampal-dependent memory tasks. To determine if similar effects exist in humans with obesity, we applied Diffusion Basis Spectrum Imaging (DBSI) to evaluate neuroinflammation and axonal integrity. We examined diffusion-weighted magnetic resonance imaging (MRI) data in two independent cohorts of obese and non-obese individuals (Cohort 1: 25 obese/21 non-obese; Cohort 2: 18 obese/41 non-obese). We applied Tract-based Spatial Statistics (TBSS) to allow whole-brain white matter (WM) analyses and compare DBSI-derived isotropic and anisotropic diffusion measures between the obese and non-obese groups. In both cohorts, the obese group had significantly greater DBSI-derived restricted fraction (DBSI-RF; an indicator of neuroinflammation-related cellularity), and significantly lower DBSI-derived fiber fraction (DBSI-FF; an indicator of apparent axonal density) in several WM tracts (all correcte
    • …
    corecore