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ABSTRACT %09 WHO4 ALTIDVA

In winter, as has previously been reported, the electron temperature
at Arecibo starts to increase prior to local sunrise following illumination of
the conjugate ionosphere.

The mechanism of this increase is examined. The roles played by
heat conduction along the field line and by photoelectrons which traverse the
field line are investigated. Detailed analyses are made of the escaping
photoelectron flux from the conjugate region including the effect of elastic
collisions with neutrals in confining the photoelectrons. Comparisons
between the theoretical heat input and observed energy losses of amient
electrons are presented. Also the theoretical and measured heat fluxes are
compared.

I. INTRODUCTION

The presunrise heating of the ambient electrons in the ionosphere
was first noticed by a series of experiment performed at the Arecibo
Ionospheric Observatory, Puerto Rico by Carlson and Nisbet {1965) in
December 1964. Since then it has been discussed by Carlson {1966) using
Arecibo data, and by Carru, Petit and Waldteufel (1966) using the data obtained
at Saint-Santin de Maurs in France. The observations have indicated an

increase in the electron temperature during the predawn period in the ionosphere
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above an altitude which varies with latitude and solar cycle. Under low
sunspot condition at Arecibo this altitude is about 300 km. Figure 1 shows
the electron temperature as a function of time at 400 km level.

Any theory for the photoelectron heating of the conjﬁgate region must
explain two pieces of data. The first is the observed heating of the F-region
as a function of altitude and the time and the second the downward heat fluxes
from the protonosphere, both during the sunrise period and throughout the
day.

II. METHOD OF CALCULATING THE DOWNWARD HEAT FLUXES AND
HEAT INPUT TO AMBIENT ELECTRONS

The mechanisms relevant to this pre-sunrise heating will be discussed
below. The continuity equation
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can be written for the photoelectrons produced at the conjugate point. The

= P-L ~-div{anv)

solution of this equation is extremely complicated because in the upper F
region losses to the ambient electrons are comparable with those té inelastic
collisions with neutral particles while the transport is considerably affected
by elastic neutral collisions. At the higher energy levels electrons may lose
several electron volts in a single inelastic collision and the angle between the
photoelectron velocity and the local magnetic field must be considered.

In the approach adopted here the analysis starts with the assumption
of steady state condition and as an initial approximation neglects the transport
term. Based on this approximation it is possible to calculate the photoelectron
densities as a function of altitude and energy in a manner similar to that
employed by Hoegy, Fournier and Fontheim (1965). The approach adopted in
this paper is drastically different from that implied in previous analyses. In

this paper it has been assumed that the elastic collisions with neutral particles
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playa dominant role in controlling the diffusion flux of the photoelectrons in

an upward direction. When a photoelectron moves downwards info a region

of increasing neutral density, the mean free path between neutral elastic
collisions is shorter than it is in an upward direction. There is thus a net
upward flux at all altitudes depending upon the photoelectron density at a given
energy, the velocity of these photoelectrons, the mean free path required to
randomize the photoelectrons velocity vector, and .the number density and
gradient of’the density of the neutral particles controlli‘ng/’the callision process.
For the simple case when the mean free path is much less than the scale height,
the diffusion velocity reduces to v = %—}I-_I cos © sinl for A << H where H is

the neutral scale height, N the mean free path of photoelectron in elastic
collisions with neutral particles, I the magnetic dip angle, © the angle between
the velocity of photoelectron and magnetic field line, and v the thermal velocity.
Corresponding formulas to that given above have been solved using a digital
computer for the case where A is comparable or greater than H. It is found
by these calculations that the divergence of nv is small compared to the other
terms in the continuity equation and hence it is permissible to use the energy
distribution of photoelectrons determined based on the equilibrium assumption
to determine the upward-going flux of photoelectrons.

The next relevant calculation is the amount of heat deposited along the
field line by this upward flux of photoelectrons above a height of about 1000 km.
The photoelectrons lose their energy to the ambient electrons along the field
line through elastic collisions. The loss in each energy and angular range can
be readily calculated. The photoelectron energy flux along the field line is
given by |

H = Z ZEX(EO,G) ® (Eo, ©)

x
Fo ©
where @ is the photoelectron flux, and
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Under low sunspot condition, the probability that the incoming photo-
electrons make a collision with the neutrals above 300 km level is gquite small.
As the incoming photoelectrons spiral down the field line from 1000 km level,
they will lose their energy through elastic collisions to the.ambient electrons
in the dark ionosphere above Arechibo. The heat input to the ambient electrons

due to the incidenl: photoelectron fluxes is given by
-12
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IIT. THE ENERGY LOSSES OF AMBIENT ELECTRONS

The energy losses of ambient electrons in the dark ionosphere above

Arecibo are calculated using the following equations:
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Qo+: -4,82 x 10"7 nez Te 2 {Te - Ti} , (Hanson and Johnson, 1961),

neglecting helium ion content at and below 400 km- level.

IVv. THE MODEL ATMOSPHERE AND CROSS-SECTIONS

For calculations of production rates of photoelectrons we have-adopted
the photon fluxes, absorption cross~-sections and photoinonization cross-sections
published by Hinteregger et al. (1964) (mean solar flux at 10.7 cm in July 1963
was 76 and that in December 1964 was 75. 2).

The composition of the neutral atmosphere was taken from the Harris
and Priester (1964) model.

The electron density at 3000 km level above Jicamarca, Peru, measured
by Farley-in the early morning on February 3, 1965, is about.104 cm-??.,
According to Brace and Reddy (1965), the electron density at 1000 km level,
50° S - 50° N meg. measured by Explorer XXII at night.(0000 - 0330‘.hrs.)‘ in
-3

Nov. - Dec. 1964 is between lO4 and about 2.5 x ~1.0.4 cm Based on these

measurements it seems reasonable to assume the total electron content of a

tube of force-above 1000 km to be .1‘013 cm-2

For the spatial rates of energy loss of photoelectrons to neutrals we

‘used the various inelastic collision cross-sections published by Fite and

Brackmann (1959), Boksenberg (1961), Rapp.et al. (1965), Engelhardt et al.
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(1964), and Dalgarno (1961). For the drift velocity of photoelectrons we
employed the total collision cross~sections published by Brode (1933), Sunshine

et al. (1966), and Engelhardt et al, (1964),

V. THE RESULTS AND COMPARISIONS WITH OBSERVATIONS

Fig. 2 shows the upward-going fluxes of photoelectrons at 300 km level.
Fig. 3 shows the variations of the photqelevctron e‘nergyv flux along’ the field line.
It can be seen that the energy deposited along the fieid line above an altitude of
1000 km is about 2 x 109 ev - cm_z- s‘ec,‘—l. Th‘e'}ther;rnal ‘capacity of both the
-ambient electrons-and ions along the field line ié very small so they can be
heated up rapidly. The time constant for this h’eating‘ pro'ce'ss’is about 10
minutes, thus in less than ébout 1/4‘6£ an h‘éur*équilibrium wdu,ld be estab-
lished. This heat will be conducted‘k downwards at both ends of the field line.
For this calculation some approximation must be made about the temperature
gradient at the conjugate region forVVVWhich‘no data of this type is available.
Fig. 4 shows the measured downward heat flux comp‘ared with the theoretical
values. Curve A is obtained under the assumption that equal heat fluxes are
present at both ends of the field line, and curve B is based on the heat flux
observed at Arecibo in summer the same length of timé after sunrise. When
the measured heat flux is extrapolated to the 1000 km 1eve1, it may be some-
where in the neighbburhood of curves A and B, |

Fig. 5 shows the heat input‘ frdni 'the’ photoelectroﬁs to the ambient
electrons compared with the total heat losses of thé ambient electrons. It
is-apparent that estimates of the photoelectrén flux‘is greater by a factor of

approximately two. The distribution of the heat input as a function of altitude

is quite similar for the theoretical and measured profiles.



VI. CONCLUSION

It appears that the assumptions we used and the data agree within a
factor of two for both the heat flux conducted downwards from the protonosphere
and the local heating by migrating photoelectrons in the ionésphere above
Arecibo. Whether the errors are in the assumptions employed in the analysis,
in the model used, or-in the experimental data, remains to be determined.
Further measurements at Arecibo and other locations will be valuable in
studying the relative energy loss along the field line »’and the time difference

between local and conjugate point sunrise.
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