19 research outputs found

    Adaptation to acetaminophen exposure elicits major changes in expression and distribution of the hepatic proteome.

    Get PDF
    Acetaminophen overdose is the leading cause of acute liver failure. One dose of 10-15 g causes severe liver damage in humans, whereas repeated exposure to acetaminophen in humans and animal models results in autoprotection. Insight of this process is limited to select proteins implicated in acetaminophen toxicity and cellular defence. Here we investigate hepatic adaptation to acetaminophen toxicity from a whole proteome perspective, using quantitative mass spectrometry. In a rat model, we show the response to acetaminophen involves the expression of 30% of all proteins detected in the liver. Genetic ablation of a master regulator of cellular defence, NFE2L2, has little effect, suggesting redundancy in the regulation of adaptation. We show that adaptation to acetaminophen has a spatial component, involving a shift in regionalisation of CYP2E1, which may prevent toxicity thresholds being reached. These data reveal unexpected complexity and dynamic behaviour in the biological response to drug-induced liver injury

    Effect of SX-3228, a selective ligand for the BZ1 receptor, on sleep and waking during the light-dark cycle in the rat

    No full text
    The effects of the benzodiazepine1 (BZ1) receptor agonist SX-3228 were studied in rats (N = 12) implanted for chronic sleep procedures. Administration of 0.5, 1.0 and 2.5 mg/kg SX-3228, sc, to rats 1 h after the beginning of the light phase of the light-dark cycle induced a significant reduction of rapid-eye-movement sleep (REMS) during the third recording hour. Moreover, slow wave sleep (SWS) was increased during the fourth recording hour after the two largest doses of the compound. Administration of 0.5, 1.0 and 2.5 mg/kg SX-3228 one hour after the beginning of the dark period of the light-dark cycle caused a significant and maintained (6-h recording period) reduction of waking (W), whereas SWS and light sleep (LS) were increased. REMS values tended to increase during the entire recording period; however, the increase was statistically significant only for the 1.0 mg/kg dose during the first recording hour. In addition, a significant and dose-related increase of power density in the delta and the theta regions was found during nonREM sleep (LS and SWS) in the dark period. Our results indicate that SX-3228 is a potent hypnotic when given to the rat during the dark period of the light-dark cycle. Moreover, the sleep induced by SX-3228 during the dark phase closely resembles the physiological sleep of the rat
    corecore