153 research outputs found

    Probing galaxy evolution through HI 21-cm emission and absorption: current status and prospects with the Square Kilometre Array

    Full text link
    One of the major science goals of the Square Kilometre Array (SKA) is to understand the role played by atomic hydrogen (HI) gas in the evolution of galaxies throughout cosmic time. The hyperfine transition line of the hydrogen atom at 21-cm is one of the best tools to detect and study the properties of HI gas associated with galaxies. In this article, we review our current understanding of HI gas and its relationship with galaxies through observations of the 21-cm line both in emission and absorption. In addition, we provide an overview of the HI science that will be possible with SKA and its pre-cursors and pathfinders, i.e. HI 21-cm emission and absorption studies of galaxies from nearby to high redshifts that will trace various processes governing galaxy evolution.Comment: 31 pages, 7 figures, accepted on 27 May 2022 for publication in the Journal of Astrophysics and Astronomy (to appear in the special issue on "Indian participation in the SKA"), figure 4 has been update

    MIGHTEE-H I: the MH I – M* relation over the last billion years

    Get PDF
    We study the MHI−M⋆ relation over the last billion years using the MIGHTEE-H i sample. We first model the upper envelope of the MHI−M⋆ relation with a Bayesian technique applied to a total number of 249 H i-selected galaxies, without binning the datasets, while taking account of the intrinsic scatter. We fit the envelope with both linear and non-linear models, and find that the non-linear model is preferred over the linear one with a measured transition stellar mass of log10 (M⋆M⊙) = 9.15±0.87, beyond which the slope flattens. This finding supports the view that the lack of H i gas is ultimately responsible for the decreasing star formation rate observed in the massive main-sequence galaxies. For spirals alone, which are biased towards the massive galaxies in our sample, the slope beyond the transition mass is shallower than for the full sample, indicative of distinct gas processes ongoing for the spirals/high-mass galaxies from other types with lower stellar masses. We then create mock catalogues for the MIGHTEE-H i detections and non-detections with two main galaxy populations of late- and early-type galaxies to measure the underlying MHI−M⋆ relation. We find that the turnover in this relation persists whether considering the two galaxy populations as a whole or separately. We note that an underlying linear relation could mimic this turnover in the observed scaling relation, but a model with a turnover is strongly preferred. Measurements on the logarithmic average of H i masses against the stellar mass are provided as a benchmark for future studies

    MIGHTEE-HI: the HI Size-Mass relation over the last billion years

    Get PDF
    We present the observed HI size-mass relation of 204204 galaxies from the MIGHTEE Survey Early Science data. The high sensitivity of MeerKAT allows us to detect galaxies spanning more than 4 orders of magnitude in HI mass, ranging from dwarf galaxies to massive spirals, and including all morphological types. This is the first time the relation has been explored on a blind homogeneous data set which extends over a previously unexplored redshift range of 0<z<0.0840 < z < 0.084, i.e. a period of around one billion years in cosmic time. The sample follows the same tight logarithmic relation derived from previous work, between the diameter (DHID_{\rm HI}) and the mass (MHIM_{\rm HI}) of HI discs. We measure a slope of 0.501±0.0080.501\pm 0.008, an intercept of 3.2520.074+0.073-3.252^{+0.073}_{-0.074}, and an observed scatter of 0.0570.057 dex. For the first time, we quantify the intrinsic scatter of 0.054±0.0030.054 \pm 0.003 dex (10%{\sim} 10 \%), which provides a constraint for cosmological simulations of galaxy formation and evolution. We derive the relation as a function of galaxy type and find that their intrinsic scatters and slopes are consistent within the errors. We also calculate the DHIMHID_{\rm HI} - M_{\rm HI} relation for two redshift bins and do not find any evidence for evolution with redshift. These results suggest that over a period of one billion years in lookback time, galaxy discs have not undergone significant evolution in their gas distribution and mean surface mass density, indicating a lack of dependence on both morphological type and redshift.Comment: 10 pages, 5 figures, accepted for publication in MNRA

    MIGHTEE-HI: The first MeerKAT HI mass function from an untargeted interferometric survey

    Get PDF
    We present the first measurement of the HI mass function (HIMF) using data from MeerKAT, based on 276 direct detections from the MIGHTEE Survey Early Science data covering a period of approximately a billion years (0z0.0840 \leq z \leq 0.084 ). This is the first HIMF measured using interferometric data over non-group or cluster field, i.e. a deep blank field. We constrain the parameters of the Schechter function which describes the HIMF with two different methods: 1/Vmax1/\rm V_{\rm max} and Modified Maximum Likelihood (MML). We find a low-mass slope α=1.290.26+0.37\alpha=-1.29^{+0.37}_{-0.26}, `knee' mass log10(M/M)=10.070.24+0.24\log_{10}(M_{*}/{\rm M_{\odot}}) = 10.07^{+0.24}_{-0.24} and normalisation log10(ϕ/Mpc3)=2.340.36+0.32\log_{10}(\phi_{*}/\rm Mpc^{-3})=-2.34^{+0.32}_{-0.36} (H0=67.4H_0 = 67.4 kms1^{-1} Mpc1^{-1}) for 1/Vmax1/\rm V_{\rm max} and α=1.440.10+0.13\alpha=-1.44^{+0.13}_{-0.10}, `knee' mass log10(M/M)=10.220.13+0.10\log_{10}(M_{*}/{\rm M_{\odot}}) = 10.22^{+0.10}_{-0.13} and normalisation log10(ϕ/Mpc3)=2.520.14+0.19\log_{10}(\phi_{*}/\rm Mpc^{-3})=-2.52^{+0.19}_{-0.14} for MML. When using 1/Vmax1/\rm V_{\rm max} we find both the low-mass slope and `knee' mass to be consistent within 1σ1\sigma with previous studies based on single-dish surveys. The cosmological mass density of HI is found to be slightly larger than previously reported: ΩHI=5.460.99+0.94×104h67.41\Omega_{\rm HI}=5.46^{+0.94}_{-0.99} \times 10^{-4}h^{-1}_{67.4} from 1/Vmax1/\rm V_{\rm max} and ΩHI=6.310.31+0.31×104h67.41\Omega_{\rm HI}=6.31^{+0.31}_{-0.31} \times 10^{-4}h^{-1}_{67.4} from MML but consistent within the uncertainties. We find no evidence for evolution of the HIMF over the last billion years.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    MIGHTEE-HI: HI galaxy properties in the large scale structure environment at z ∼ 0.37 from a stacking experiment

    Get PDF
    We present the first measurement of HI mass of star-forming galaxies in different large scale structure environments from a blind survey at z ∼ 0.37. In particular, we carry out a spectral line stacking analysis considering 2875 spectra of colour-selected star-forming galaxies undetected in HI at 0.23 < z < 0.49 in the COSMOS field, extracted from the MIGHTEE-HI Early Science datacubes, acquired with the MeerKAT radio telescope. We stack galaxies belonging to different subsamples depending on three different definitions of large scale structure environment: local galaxy overdensity, position inside the host dark matter halo (central, satellite, or isolated), and cosmic web type (field, filament, or knot). We first stack the full star-forming galaxy sample and find a robust HI detection yielding an average galaxy HI mass of MHI = (8.12 ± 0.75) × 109 M⊙ at ∼11.8σ. Next, we investigate the different subsamples finding a negligible difference in MHI as a function of the galaxy overdensity. We report an HI excess compared to the full sample in satellite galaxies (MHI = (11.31 ± 1.22) × 109, at ∼10.2σ) and in filaments (MHI = (11.62 ± 0.90) × 109. Conversely, we report non-detections for the central and knot galaxies subsamples, which appear to be HI-deficient. We find the same qualitative results also when stacking in units of HI fraction (fHI). We conclude that the HI amount in star-forming galaxies at the studied redshifts correlates with the large scale structure environment

    MIGHTEE-HI: HI galaxy properties in the large scale structure environment at z~0.37 from a stacking experiment

    Full text link
    We present the first measurement of HI mass of star-forming galaxies in different large scale structure environments from a blind survey at z0.37z\sim 0.37. In particular, we carry out a spectral line stacking analysis considering 28752875 spectra of colour-selected star-forming galaxies undetected in HI at 0.23<z<0.490.23 < z < 0.49 in the COSMOS field, extracted from the MIGHTEE-HI Early Science datacubes, acquired with the MeerKAT radio telescope. We stack galaxies belonging to different subsamples depending on three different definitions of large scale structure environment: local galaxy overdensity, position inside the host dark matter halo (central, satellite, or isolated), and cosmic web type (field, filament, or knot). We first stack the full star-forming galaxy sample and find a robust HI detection yielding an average galaxy HI mass of MHI=(8.12±0.75)×109MM_{\rm HI}=(8.12\pm 0.75)\times 10^9\, {\rm M}_\odot at 11.8σ\sim 11.8\sigma. Next, we investigate the different subsamples finding a negligible difference in MHIM_{\rm HI} as a function of the galaxy overdensity. We report an HI excess compared to the full sample in satellite galaxies (MHI=(11.31±1.22)×109M_{\rm HI}=(11.31\pm1.22)\times 10^9, at 10.2σ\sim 10.2 \sigma) and in filaments (MHI=(11.62±0.90)×109M_{\rm HI}=(11.62\pm 0.90)\times 10^9. Conversely, we report non-detections for the central and knot galaxies subsamples, which appear to be HI-deficient. We find the same qualitative results also when stacking in units of HI fraction (fHIf_{\rm HI}). We conclude that the HI amount in star-forming galaxies at the studied redshifts correlates with the large scale structure environment.Comment: Accepted for publication in MNRAS. 15 figures, 3 table

    Agile Manifesto and Practices Selection for Tailoring Software Development: A Systematic Literature Review

    Full text link
    peer reviewedAgile methods have been largely used for many years to provide developers with a flexible software development process leading to software quality improvement. To get the best results and eliminate unnecessary efforts, the development team should select the most appropriate methods and techniques. The fundamental core of an agile method has to be well-understood before deciding which parts of the method need to be adopted. We believe that the quickest way to do so is to understand the prescripts of the Agile Manifesto. Many researches have proposed different tailoring approaches based on the relation and straight-forward interpretation between each agile practice and agile values or principles. We however have observed that agile practitioners do not dedicate the necessary attention to the Agile Manifesto before adopting agile methods or practices and directly use them. It is because the importance of Agile Manifesto in tailoring context is not obvious enough to the community. This study aims at doing a systematic literature review on the existing case studies, to verify the relation between the Agile Manifesto and agile practice selection

    Degradation behaviors and mechanisms of MoS2 crystals relevant to bioabsorbable electronics

    Get PDF
    Monolayer molybdenum disulfide (MoS2) exhibits unique semiconducting and bioresorption properties, giving this material enormous potential for electronic/biomedical applications, such as bioabsorbable electronics. In this regard, understanding the degradation performance of monolayer MoS2 in biofluids allows modulation of the properties and lifetime of related bioabsorbable devices and systems. Herein, the degradation behaviors and mechanisms of monolayer MoS2 crystals with different misorientation angles are explored. High-angle grain boundaries (HAGBs) biodegrade faster than low-angle grain boundaries (LAGBs), exhibiting degraded edges with wedge and zigzag shapes, respectively. Triangular pits that formed in the degraded grains have orientations opposite to those of the parent crystals, and these pits grow into larger pits laterally. These behaviors indicate that the degradation is induced and propagated based on intrinsic defects, such as grain boundaries and point defects, because of their high chemical reactivity due to lattice breakage and the formation of dangling bonds. High densities of dislocations and point defects lead to high chemical reactivity and faster degradation. The structural cause of MoS2 degradation is studied, and a feasible approach to study changes in the properties and lifetime of MoS2 by controlling the defect type and density is presented. The results can thus be used to promote the widespread use of two-dimensional materials in bioabsorption applications
    corecore