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Abstract

Rust and late leaf spot (LLS) resistance sources involving Arachis batizocoi, A. dura-

nensis, A. cardenasii and A. sps Manfredi‐5 were identified from field evaluation of

interspecific derivatives (IDs) of groundnut in a disease nursery for two seasons.

Although the sources displayed low levels of resistance compared to currently culti-

vated lines, they contribute allele diversity in groundnut breeding that has so far

relied on alleles contributed from A. cardenasii for disease resistance. Multiple dis-

ease‐resistant and agronomically superior IDs, ICGVs 11379, 10121, 10179, 05097,

02411 and 00248 involving A. batizocoi, A. duranensis and A. cardenasii can be used

in breeding for groundnut improvement. Genetic variability for resistance to rust

and LLS, yield and nutritional quality traits was influenced by genotype, environment

and genotype × environment interaction effects in individual and pooled analyses. In

case of FAD (fatty acid desaturase)‐mutant alleles that govern high oleic trait, allele

mining of IDs (110) showed that frequency of mutation in ahFAD2B is rare, whereas

of ahFAD2A is common. High oleic lines were not detected among the IDs.
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1 | INTRODUCTION

Cultivated groundnut (Arachis hypogaea L.) is an allotetraploid

(2n = 4x = 40) belonging to the genus Arachis and family Legumi-

nosae. It can be used as oil, food and feed crop and is cultivated in

an area of 25.44 m ha globally with a total production of 45.22 m

tons during 2013 (FAO stat, 2014). Globally, over 50% of the

groundnut produce is crushed into oil for human consumption and

industrial uses, and less than 40% is used directly as food.

Groundnuts are valued for their nutritional benefits as they are rich

in oil (~50%) and protein (~25%), and also contain health‐enhancing
nutrients such as minerals, antioxidants and vitamins.

The genus Arachis contains 81 described species that include

diploids and tetraploids (Leal‐Bertioli et al., 2015; Valls, Costa, &

Custodio, 2013; Valls & Simpson, 2005), classified into nine taxo-

nomical sections based on morphological variation, geographical dis-

tribution and cross‐compatibility (Krapovickas & Gregory, 1994). The

other tetraploid species of the genus are A. monticola of section Ara-

chis and A. pseudovillosa, A. glabrata and A. nitida from section Rhi-

zomatasae, while all other species are diploid with 2n = 2x = 20 or

2n = 2x = 18 genome constitution. Differences in the ploidy levels†Contributed equally.
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of cultivated and wild species have imposed crossing barriers result-

ing in low genetic variability for important biotic and abiotic stresses

in the cultivated gene pool. Groundnut improvement programmes

around the world have so far tapped the genetic variability from the

primary gene pool that includes two tetraploid species, A. hypogaea

and A. monticola. Both secondary and tertiary gene pools comprising

diploid wild species are potential sources of new alleles for resis-

tance to foliar fungal diseases (Dwivedi, Pande, Rao, & Nigam, 2002;

Dwivedi et al., 2008; Pande & Rao, 2001), resistance to aflatoxin

contamination (Xue, Isleib, Stalker, Payne, & Obrian, 2005), tolerance

of abiotic stress (Nautiyal et al., 2008) and morpho‐agronomic and

nutritional quality traits (Upadhyaya, Dwivedi, Nadaf, & Singh, 2011).

Majority of species from the secondary gene pool are cross‐
compatible with cultivated groundnut, while species from the tertiary

gene pool are either weakly cross‐compatible or cross‐incompatible

with cultivated groundnut. Despite the pre‐ and postfertilization bar-

riers, triploids (Mallikarjuna, Pande, Jadhav, Sastri, & Rao, 2004) and

synthetic tetraploids (Mallikarjuna, Senthilvel, & Hoisington, 2011)

were developed through tissue culture techniques and used to intro-

gress new alleles into cultivated groundnut. Molecular and genetic

studies have led to identification of quantitative trait loci (QTL) from

wild species contributing to genetic variation to groundnut produc-

tivity and adaptation traits (Fonceka et al., 2012), and resistance to

disease (Leal‐Bertioli et al., 2009). A full‐length AdTLP gene from

A. diogoi, a diploid wild species, was isolated and its protein was

shown to impart significant resistance against fungal pathogens, salt

and oxidative stress in transgenic plants (Singh, Rajesh Kumar,

Kumar, Shukla, & Kirti, 2013), suggesting the potential of wild spe-

cies to contribute new alleles.

Sources of resistance to two major foliar fungal diseases, late leaf

spot (LLS) caused by Phaeoisariopsis personata (Berk. & M.A. Curtis)

Van Arx and rust caused by Puccinia arachidis Speg., are available in

cultivated groundnut. However, the genetic base can be broadened

by utilizing new alleles from wild species. A few studies have

reported sources of resistance to LLS and rust in interspecific deriva-

tives (IDs) (Dwivedi et al., 2002; Pande, Rao, & Dwivedi, 2002;

Shilpa et al., 2013).

Very limited variability was reported for oleic acid concentration

among wild Arachis species (Grosso, Nepote, & Guzman, 2000;

Wang, Barkley, Chinnan, Stalker, & Pittman, 2010) and newly syn-

thesized amphidiploid and auto‐tetraploid groundnut (Shilpa et al.,

2013). However, in a study involving 24 wild Arachis species, an

A. correntina line with oleic acid concentration of 68% was reported

by Tang et al. (2013). For oil concentration, variability ranging from

51% to 63% was reported among 72 wild Arachis accessions tested

over 3 years (Huang et al., 2012). Thus, crossing cultivated ground-

nut with wild species can improve upon the genetic diversity and

also introgress traits of interest into the cultivated gene pool. This

study was conducted with an objective to explore variability for

resistance to diseases, nutritional quality and yield parameters in a

set of 110 IDs of groundnut developed at the International Crops

Research Institute for the Semi‐Arid Tropics (ICRISAT), Patancheru,

Tamil Nadu Agricultural Research Station (TNAU), Vridhachalam and

Indian Council of Agricultural Research‐Directorate of Groundnut

Research (ICAR‐DGR), Junagadh, India, and to identify suitable IDs

for use in breeding.

2 | MATERIALS AND METHODS

2.1 | Plant materials

A total of 110 IDs of which 50 from ICRISAT, Patancheru, 36 from

DGR, Junagadh, and 24 from TNAU, Vridhachalam, were evaluated

under field condition during 2013 and 2015 rainy season. The wild

species involved in developing IDs are summarized in Table 1, and

all the parents involved are given in Supporting information

Table S1. ICGV 86590 is resistant control, and ‘TMV2’ is the sus-

ceptible control for foliar fungal diseases. SunOleic 95R, with oleic

acid concentration of >80% and O/L ratio of >20, was used as the

check for oleic acid.

2.2 | Field experiment

The IDs were evaluated in an alpha lattice design with two replica-

tions in precision fields on Alfisol (clayey‐skeletal, mixed, isohyper-

thermic family of Udic Rhodustalfs) at Patancheru (17°53′N, 78°27′
E, and 545 m altitude), India, during 2013 and 2015 rainy season.

The plot size was one row of 4 m length spaced at 30 cm between

rows and 10 cm between plants. Recommended cultural manage-

ment practices were followed during the cropping period. For dis-

ease screening, infector rows of a susceptible cultivar, ‘TMV2’, were

planted along the border rows as well as after every ten rows of test

material to maintain uniform and effective inoculum load. To pro-

mote disease development in the infector rows, rust and LLS‐
infected ‘TMV2’ plants from the greenhouse were transplanted to

the field at 50 days after sowing (DAS). Also, both conidia of LLS

and urediniospores of rust were sprayed at a concentration of

5 × 104 spores/ml on infector rows. Sprinkler irrigation was provided

daily for 30 min/day for a period of one month starting from the day

of field inoculation with the pathogen. The experimental field

received 60 kg/ha P2O5 and 400 kg/ha gypsum. Eight supplemental

sprinkler irrigations were provided with about 5 cm depth of water

at each irrigation.

For artificial inoculation, ‘TMV2’ seeds were sown in the green-

house and sprayed with urediniospores of rust and conidia of LLS at

5 × 104 spores/ml at 35 DAS. Water was sprinkled in and around

the inoculated plants grown in the polybags, and the plants were

covered with a polyethylene sheet during the nights for 7 days to

maintain high humidity (95%).

2.3 | Recording disease reaction, nutritional quality
and yield traits

The IDs along with checks were evaluated for disease reaction to

LLS and rust, nutritional quality and yield traits. All plants in each

plot were used to record observations on various qualitative and
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quantitative traits. Data were recorded on plot basis for pod and

seed yield and converted into kg/ha. The shelling per cent (SH %)

was estimated from a sample of 200 g of randomly selected pods,

while a random sample of 100 mature seeds was used to record

100‐seed weight. Protein, fatty acid and oil concentration were

measured with near‐infrared reflectance spectroscopy (NIRS) (NIR

Systems model XDS monochromator, FOSS Analytical AB, Sweden,

Denmark). About 100–150 seeds of each genotype from both the

replications were scanned twice using NIRS. Calibration equations

were developed in the laboratory and validated for estimation of oil,

protein and fatty acid concentration in whole seeds of groundnut

(Unpublished data). The regression coefficient (R2) values of the cali-

bration equations for predicting oil, protein and palmitic acid were

0.84, 0.88 and 0.89, respectively, while it was 0.96 for oleic and

linoleic acid. For LLS and rust, disease scoring was done based on

modified 9‐point scale, where 1 = no disease and 9 = >80% diseases

incidence with almost all leaves defoliated as given by Subrah-

manyam et al. (1995). The disease scores of rust and LLS were

recorded at 75 and 90 DAS.

2.4 | DNA isolation and genotyping for FAD alleles
and for resistance to rust and LLS

Leaf samples from unopened leaves of 10‐ to 15‐day‐old seedlings

were collected and used to isolate the genomic DNA using modified

CTAB‐based method as described by Cuc et al. (2008). After DNA

isolation, the quality and quantity of the DNA were checked on

0.8% agarose gel. The DNA concentration was then normalized to

5 ng/μl and used in genotyping with allele‐specific markers of

ahFAD2A and ahFAD2B genes (Chen, Wang, Barkley, & Pittman,

2010). The polymerase chain reactions (PCRs) were performed in

10 μl volume using 5 ng of genomic DNA, 0.5 μM of each forward

and reverse primer, 1× PCR buffer (Sib‐Enzyme, Russia), 5 mM

MgCl2, 0.03 U/μl of Taq DNA polymerase (Kapa Biosystems, Inc,

Wilmington, MA), and 0.2 mM dNTPs. PCRs were performed follow-

ing a touch‐down PCR profile in an ABI thermal cycler (Applied

Biosystems, Foster city, CA). The touch‐down PCR amplification pro-

file had initial denaturation step for 3 min at 94°C followed by first

five cycles of 94°C for 20 s, 65°C for 20 s and 72°C for 30 s, with

1°C decrease in temperature after each cycle. Afterwards, 35 cycles

of 94°C for 20 s with constant annealing temperature (59°C) for

20 s and primer extension at 72°C for 30 s and final extension at

72°C for 20 min were performed. The PCR products were separated

on a 3.0% agarose gel (SeaKem LE® Agarose) in 1× TBE buffer by

electrophoresis at 150 V for an hour. The agarose gels were stained

with ethidium bromide and visualized under UV light. Separated frag-

ments on the agarose gels were sized by referencing with a 100‐bp
DNA ladder (Life Technologies, Carlsbad, CA).

Four different SSRs, namely, GM1536, IPAHM103, GM2079,

GM2301, were used to screen for rust and LLS‐specific loci located

on chromosome A03. Three different SSRs, namely, SEQ8D09,

GM2032, and GM1009, were used for screening LLS resistance alle-

les present on chromosome A02 (Sujay et al., 2012). The genotyping

method used is explained in Varshney et al. (2009). PCR products

were resolved on 1.5% agarose gel to confirm amplification. The for-

ward primers were dye labelled with FAM, VIC and NED, which

were detected as blue, green and black colour peaks, respectively

(Applied Biosystems, USA). The PCR products were denatured and

TABLE 1 Wild Arachis species involved in developing groundnut
interspecific derivatives

Wild species used Interspecific derivatives (IDs)

A. cardenasii ICGVs 00005, 01265, 02323, 03057,

03179, 04157 07086, 10004, 10150,

10221, 10290, 10291, 10332, 10340,

10342, 10349, 11008, 11009, 11010,

11015, 11367, 11368, 11370, 11417,

11447, 98373, 99085, 05100, NRCGCSs

‐151, ‐157, ‐158, ‐204, ‐212, ‐235, VGs
0401, 0410, 0411, 0430, 0437, 0438,

0512, 0515 and 0517

A. duranensis NRCGCSs ‐146, ‐169, ‐172 and ‐317

A. batizocoi VG 1002

A. villosa NRCGCSs‐ 152, ‐170, ‐223 and ‐224

A. sps Manfredi‐5 NRCGCS‐161

A. paraguariensis NRCGCS‐227

A. stenosperma NRCGCS‐254 and VG 9406

A. kretschmeri NRCGCSs ‐287, ‐289, ‐301, ‐305, ‐312 ‐
353, and 289‐1 purple,

A. diogoi NRCGCSs‐134, ‐137, ‐138 and ‐350

A. correntina NRCGCS‐354, VG 1007, VG 1008

A. oteroi NRCGCS‐355

A. batizocoi and

A. duranensis

ICGVs 00248, 01361, 02411, 02446,

04071, 05097, 06157, 06175, 06285,

07213, 09012, 09138, 10002, 10179,

11003, 11379, 11464, 98293, 99052,

98290, NRCGCS‐421, VG 0701 and VG

0706

A. cardenasii and A. villosa VGs 1013, 1016, 9412 and 9411

A. cardenasii and

A. stenosperma

VG 1012 and VG 1015

A. duranensis and

A. helodes

NRCGCSs‐415 and ‐416

A. duranensis and

A. monticola

NRCGCS‐417

A. duranensis and

A. pusilla

NRCGCS‐418

A. duranensis and

A. correntina

NRCGCS‐419

A. duranensis and

A. villosa

VG 1004 and VG 1005

A. correntina and

A. helodes

VG 1010

A. cardenasii and Arachis

sps Manfredi‐5
ICGV 00068

A. batizocoi, A. duranensis,

and A. cardenasii

ICGV 10121

BERA ET AL. | 3



separated with capillary electrophoresis using ABI 3700 automatic

DNA sequencer (Applied Biosystems). GeneMapper Software V

(Applied Biosystems) was used for scoring of allele size.

2.5 | Statistical analysis

The mean data were used for analysis of individual and pooled vari-

ance using Genstat 17th edition for alpha lattice design (www.vsni.c

o.uk). The various genetic parameters including mean, range and

coefficient of variation were evaluated as suggested by Federer

(1956), and phenotypic and genotypic coefficient of variance was

calculated using the formula suggested by Burton (1952). Broad‐
sense heritability (H2) was calculated using the following equation:

H2 ¼ σ2G

σ2G þ σ2
GE
e

� �
þ σ2e

re

� �

where σ2G—genotypic variance, σ2GE—genotype–environment inter-

action variance, σ2e—residual variance, e—number of environments,

r—replications per environment.

Genotypic and phenotypic correlation among the traits (Pearson,

1895) was estimated, and significance was tested comparing

with critical values of t at <0.05 probability level using META R

version 5.0.

3 | RESULTS

Disease incidence was severe in the experimental plots during 2013

and 2015 rainy seasons with ‘TMV2’ recording a score of 9.0 for

rust and LLS at 90 DAS. Analysis of variance (ANOVA) presented in

Table 2 revealed that the genotypic effects were significant for all

the 14 traits during 2013 and 2015 rainy seasons. Pooled ANOVA

over two seasons revealed significant differences among genotypes,

environment and genotype × environment (G × E) interaction

effects.

The pooled range, mean, coefficient of variation (CV), genotypic

and phenotypic coefficient of variation (GCV and PCV) and heritabil-

ity in broad sense for all the characters are given in Table 3. For

resistance to diseases, yield and nutritional parameters, PCV values

were found to be higher than the GCV. Higher GCV and PCV values

coupled with high heritability were observed for LLS and rust at 75

and 90 DAS in individual as well as pooled across years, whereas

low to moderate GCV and low to high PCV values were reported for

yield traits. However, GCV and PCV values were low for all the

nutritional quality parameters. The estimates of broad‐sense heri-

tability for yield and nutritional quality traits, and resistance to rust

and LLS ranged from 33% to 89%.

The IDs recorded high variation for rust and LLS scores. Pooled

analysis revealed that the disease score among the IDs at 90 DAS

ranged from 3.2 to 7.6 for LLS, and from 2.1 to 5.6 for rust on a 1.0

to 9.0 scale. ICGVs 99052, 02411, 05097, 98293, 00248, 11379,

07213, 10121, 10179, 04071, 02323, 02446, 11417 and VGs 0517

and 1008 recorded lower mean disease score of 3.0 to 4.0 and were

significantly superior compared to the resistant check ICGV 86590

with LLS score of 6.0 at 90 DAS. The LSD for LLS at 90 DAS was

0.89. For rust, ICGVs 98293, 11379, 00248, 10179, 02411, 99052,

11417, 10150, 11447 and 00068 recorded mean disease score of

2.0, similar to the resistant check (ICGV 86590). The LSD for rust at

90 DAS was 0.94. Among these derivatives, ICGVs 98293, 11379,

00248, 10179, 02411, 05097 and 99052 recorded disease scores of

3.0–4.0 for LLS and 2.0 for rust at 90 DAS (Table 4).

Oil concentration among the IDs varied from 45% to 54%, and

protein concentration from 22% to 27%. Oleic acid concentration of

the IDs varied from 34% to 49%, linoleic acid concentration varied

between 30 and 43%, palmitic acid concentration from 11% to 13%,

and stearic acid concentration from 1% to 3%. SunOleic 95R

recorded oleic acid concentration of 82%, linoleic acid of 4% and O/

L ratio >20 in this study. Pod yield per hectare varied from 1620 to

5598 kg, seed yield from 1074 to 3223 kg, shelling per cent from 57

to 70% and 100‐seed weight from 21 to 56 g.

Phenotypic and genotypic correlations between the traits were

calculated, and significant trait associations are presented in Table 5.

Pod yield per hectare showed significant negative correlation with

LLS and rust at 75 DAS (rp = −0.77, rg = −0.98 for LLS and rp =

−0.67, rg = −0.75 for rust) and 90 DAS (rp = −0.79, rg = −1.00 for

LLS and rp = −0.67, rg = −0.89 for rust), and positive association with

seed yield per hectare (rp = 0.97 and rg = 0.99) and 100‐seed weight

(rp = 0.48 and rg = 0.76). Oil and protein concentration had signifi-

cant negative association with each other but the magnitude was

<0.5. Strong significant negative phenotypic and genotypic correla-

tion was observed between oleic acid concentration and linoleic acid

concentration (rp = −0.98, rg = −0.99), while significant positive cor-

relation was found between linoleic acid concentration and palmitic

acid concentration (rp = 0.83, rg = 1.00).

Allele mining was done for ahFAD2A- and ahFAD2B‐mutant alle-

les in IDs (110 accessions) using allele‐specific markers developed by

Chen et al. (2010). Genotyping revealed mutation in A‐genome (for

ahFAD2A) among the genotypes ICGV 06175, NRCGS lines ‐227,
‐161, ‐157, ‐138, ‐421, and VG lines 0507, 1002, 1007, 1008, 1010

and 1016 but none with B‐genome (for ahFAD2B) mutation.

Screening for rust and LLS alleles was done on 32 IDs. The rust

score of the derivatives varied from 2 to 3 for rust and 3 to 7 for

LLS at 90 DAS. GPBD 4, a rust‐ and LLS‐resistant genotype derived

from A. cardenasii, was used to characterize the IDs. SSR markers,

namely, GM1536, IPAHM103, GM2079 and GM2301 for rust and

LLS screening showed similar peaks to GPBD 4 in 23 IDs, of which

nine are from A. cardenasii, 13 are derived from A. batizocoi and

A. duranensis, and one was derived from A. cardenasii, A. batizocoi

and A. duranensis (Tables 6 and 7). Five derivatives (ICGV 10221,

ICGV 11009, VG 0410, VG 0411 and VG 0430) from A. cardenasii

showed different alleles for GM1536 and IPAHM103; while ICGVs

04157, 06157, 00068 and VG 0437 had a different allele only for

GM1536. For LLS, with the exception of VG 0437 which indicated a

different peak for GM1009, all the remaining derivatives showed
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similar peaks to GPBD 4 for the markers SEQ8D09, GM2032 and

GM1009 (Table 7).

4 | DISCUSSION

The wild species used in this study represented four diverse gene

pools, primary, secondary, tertiary and quaternary. Thirty‐nine of

these derivatives involved more than one wild species in their pedi-

gree (Table 1). Of the fourteen wild species involved, thirteen were

diploids viz., A. villosa, A. cardenasii, A. correntina, A. duranensis, Ara-

chis sps Manfredi‐5, A. paraguariensis, A. stenosperma, A. kretschmeri,

A. diogoi, A. helodes, A. pusilla, A. oteroi and A. batizocoi, while

A. monticola was the only tetraploid species. They belonged to four

sections and represent five different genomes, viz., AA, BB, EE,

AABB and AM. Information on the genome constitution and section

of Arachis sps Manfredi‐5 is not reported in the available literature.

The diploid species A. batizocoi is a B‐genome species; A. parguarien-

sis, A. oteroi and A. kretschmeri have E‐genome; A. pusilla has AM‐
genome; and other diploids are A‐genome species as per genome

assignment given by Bechara et al. (2010). A. paraguariensis and A.

oteroi belongs to section Erectoides and A. pussila to section Heteran-

thae and both these sections come under fourth gene pool. A.

kretschmeri belongs to section Procumbentes of the tertiary gene

pool, and the other ten species belong to section Arachis of primary

and secondary gene pools (Bechara et al., 2010; Huang et al., 2012;

Singh & Simpson, 1994).

Morphologically, the IDs were similar to the cultivated groundnut

in growth habit (erect or decumbent) and branching pattern (Spanish

Bunch). However, a few irregular branching types were also

observed.

4.1 | Variation for rust and LLS resistance and yield
parameters among the IDs

Individual and pooled analysis revealed the existence of genetic vari-

ability for resistance to LLS and rust diseases among the IDs

(Table 3; Figure 1). Over 50% of the genotypes recorded disease

scores in the range of 5–8 for LLS and 3–6 for rust at 90 DAS in

both the seasons. The genotypes, ICGVs 99052, 02411, 05097,

98293, 00248, 11379, 07213, 10121, 10179, 04071, 02323, 02446,

11417, VG 0517 and VG 1008, recorded lower mean disease score

(3–4), compared to resistant check, ICGV 86590 with LLS score of 6

at 90 DAS. The ICGV derivatives and VG 0517 involved either

A. cardenasii or both A. batizocoi and A. duranensis in their pedigree

or a combination of them, while VG 1008 is a derivative involving

A. correntina. Hence, both A (A. cardenasii, A. duranensis and A. cor-

rentina) and B‐genome species (A. batizocoi) contributed to LLS resis-

tance among the IDs.

The rust scores of the IDs ranged from 2 to 6 and from 2 to 7

during rainy seasons 2013 and 2015, respectively. In the pooled

analysis, about 27 IDs recorded rust score of 2, which was similar to

the resistant check ICGV 86590, and were derived from eight wild

species, namely, A. cardenasii, A. batizocoi, A. stenosperma, A. cor-

rentina, A. duranensis, A. villosa, A. helodes and Arachis sps Manfredi‐
5. The diversity among the wild species involved in providing rust

resistance indicates the possibility of mining new alleles for this trait.

A few earlier studies on groundnut have also reported resistance to

rust and LLS in IDs (Dwivedi et al., 2002; Pande et al., 2002; Shilpa

et al., 2013).

Among the yield parameters, pod yield per hectare varied from

1620 to 5598 kg, seed yield per hectare from 1074 to 3223 kg,

shelling per cent from 57% to 70% and HSW from 21 to 56 g in the

Trait Mean±SE CV% Range among IDs GCV (%) PCV (%) Heritability (%)

PYH (kg/ha) 3190 ± 393.1 17.52 1620–5598 24.34 31.49 59.7

SYH (kg/ha) 2036 ± 261.7 20.36 1074–3223 22.91 31.13 54.2

SH (%) 64.0 ± 1.7 5.999 57.2–69.7 3.239 5.6 33.5

HSW (g) 34.8 ± 2.1 7.723 21.5–56.2 16.78 18.15 85.5

LLS (75 days) 3.4 ± 0.4 15.98 1.9–5.1 27.72 29.69 87.2

LLS (90 days) 5.9 ± 0.4 10.91 3.2–7.6 17.44 19.43 80.6

Rust (75 days) 2.4 ± 0.4 25.95 1.4–4.3 36.97 39.98 85.5

Rust (90 days) 3.6 ± 0.5 19.19 2.1–5.6 33.11 35.99 84.6

OC (%) 48.7 ± 0.9 2.891 44.6–53.9 4.012 4.587 76.5

PC (%) 24.4 ± 0.5 4.045 21.9–26.7 3.541 4.734 56.0

PAC (%) 12.4 ± 0.2 3.015 11.3–13.2 3.397 4.762 50.9

SAC (%) 2.0 ± 0.1 12.96 1.4–2.5 9.473 14.59 42.2

OAC (%) 41.2 ± 1.3 3.967 34.4–48.6 9.64 10.22 88.9

LAC (%) 36.9 ± 1.1 3.924 30.1–42.9 9.378 9.939 89.0

Notes. 75d, and 90d indicate the disease score recorded at 75 and 90 days after sowing; CV: coefficient of vari-

ation; GCV: genotypic coefficient of variation; HSW: hundred seed weight (g); LAC: linoleic acid concentration;

LLS: late leaf spot; OAC: oleic acid concentration; OC: oil concentration; PAC: palmitic acid concentration; PC:

protein concentration; PCV: phenotypic coefficient of variation; PYH: pod yield hectare (kg/ha); SAC: stearic acid

concentration; SE: standard error; SH: shelling per cent; SYH: seed yield hectare (kg/ha).

TABLE 3 Pooled means, range,
CV, GCV, PCV and broad‐sense
heritability for 14 traits of
interspecific groundnut
derivatives evaluated at ICRISAT,
Patancheru
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pooled analysis (Table 3). Variability for pod and seed yield, HSW,

harvest index and shelling per cent were earlier reported among IDs

(Bera, Kumar, Radhakrishnan, Sojitra, & Gedia, 2010) and cultivated

groundnut (Zaman, Tuhina‐Khatun, Ullah, Moniruzzamn, & Alam,

2011).

4.2 | Multiple disease‐resistant interspecific
derivatives

About 13 IDs, namely, ICGVs 99052, 02411, 05097, 98293, 00248,

11379, 10121, 10179, 04071, 02323, 02446, 07213 and VG 1008,

had low rust (score 2) and LLS (score 3–4) score at 90 DAS, and

recorded superior pod yield performance (Table 4). They were

derived from four different wild species (A. batizocoi, A. duranensis,

A. cardenasii and A. correntina) and might possibly contain new alleles

for rust and LLS, which needs to be further studied. For the yield

parameters of these 13 IDs, pod yield per hectare varied from 3970

to 5598 kg, seed yield per hectare from 2501 to 3223 kg, shelling

per cent from 60% to 67% and 100‐seed weight from 33 to 45 g.

The superior performance of IDs may in part be attributed to the

protection offered to the yield loss by disease resistance. The oil and

protein concentration (%) of these lines varied from 48 to 54% and

24% to 26%, respectively.

4.3 | Variation for nutritional quality traits among
the IDs

The IDs recorded good variability for oil, protein and fatty acids con-

centration (Table 3). The IDs ICGVs 02446, 00248, 06175, 02411,

TABLE 4 Characterization of promising genotypes of groundnut
interspecific derivatives with better performance for yield and
disease scores

Genotypes PYH SYH
SH
% HSW

LLS‐
90a

Rust‐
90a

OC
(%)

PC
(%)

ICGV

11379

5,598 3,186 62.9 44.3 3.9 2.1 49.9 24.5

ICGV

10121

5,400 3,223 62.5 44.7 4.2 2.4 52.1 25.1

ICGV

10179

5,174 2,971 61.6 41.4 4.4 2.1 50.2 24.7

ICGV

05097

4,905 2,951 61.9 37.7 3.7 2.4 50.9 24.8

ICGV

00248

4,876 3,075 63.1 38.6 3.7 2.1 53.0 24.6

ICGV

02411

4,746 2,843 60.8 35.8 3.5 2.1 52.8 24.6

ICGV

99052

4,596 2,721 60.5 39.9 3.2 2.1 51.0 25.5

ICGV

07213

4,521 3,056 65.5 37.2 4.2 2.6 49.7 24.7

ICGV

02323

4,309 2,871 66.6 39.6 4.4 2.4 50.4 25.6

ICGV

04071

4,263 2,812 64.8 42.5 4.4 2.4 50.9 24.5

ICGV

98293

4,231 2,501 66.3 33.4 3.7 2.1 48.3 24.2

ICGV

02446

4,136 2,592 63.1 35.5 4.4 2.4 53.9 25.1

VG1008 3,970 2,762 67.2 42.1 4.4 2.4 50.4 26.1

ICGV

86590

(RC)

2,848 1,758 61.8 31.4 6.0 2.4 46.9 24.4

Notes. aLSD for LLS 90 and rust 90 days are 0.89 and 0.94, respectively.

The best entries were significantly superior for LLS‐90 score, while for

Rust‐90 score entries were at par with resistance check (ICGV 86590).

75 days and 90 days indicate the disease score recorded at 75 and

90 days after sowing; HSW: hundred seed weight (g); LLS: late leaf spot;

OC: oil concentration (%); PC: protein concentration (%); RC=resistant

check for LLS and RUST. The disease score of ‘TMV2’, a susceptible

check, was 9.0 for both LLS and rust at 90 days after sowing (DAS);

PYH: pod yield hectare (kg/ha); SH: shelling per cent; SYH: seed yield

hectare (kg/ha).

TABLE 5 Phenotypic and genotypic correlation coefficient
between some important pairs of traits in interspecific derivatives of
groundnut

S.
No. Trait Association Correlation

Correlation
coefficient

1 LLS disease score at 75 DAS and

PYH

rg −0.98*

rp −0.77*

2 LLS disease score at 90 DAS and

PYH

rg −1.00*

rp −0.79*

3 Rust disease score at 75 DAS and

PYH

rg −0.75*

rp −0.67*

4 Rust disease score at 90 DAS and

PYH

rg −0.89*

rp −0.67*

5 SYH and PYH rg 0.99*

rp 0.97*

6 PYH and HSW rg 0.76*

rp 0.48*

7 Rust disease score at 75 DAS and

LLS disease score at 75 DAS

rg 0.67*

rp 0.79*

8 Rust disease score at 90 DAS and

LLS disease score at 90 DAS

rg 0.67*

rp 0.79*

9 Oil concentration and protein

concentration

rg −0.35*

rp −0.13

10 Linoleic acid and oleic acid

concentration

rg −0.99*

rp −0.98*

11 Linoleic acid and palmitic acid

concentration

rg 1.00*

rp 0.83*

12 Linoleic acid and stearic acid

concentration

rg 0.50*

rp 0.32*

Notes. *Represents significance at <0.05 probability level.

75 days and 90 days indicate the disease score recorded at 75 and

90 days after sowing; HSW: hundred seed weight (g); LLS: late leaf spot;

PYH: pod yield hectare (kg/ha); SYH: seed yield hectare (kg/ha).
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10121, 10342, and 10290 recorded ≥52% oil concentration,

whereas ICGVs 10221, 11447, 11370, 02323, 99052; VGs 1010,

1007, 1008, 0438, 9406, 9412 and NRCGCS 421 had higher protein

concentration of ≥26%. VG 9406 was derived from A. stenosperma

(A‐genome), VG 1010 was derived from A. correntina (A‐genome)

and A. helodes (A‐genome), VG 1007 and 1008 were derived from

A. correntina, VG 9412 was derived from A. cardenasii (A‐genome)

and A. villosa (A‐genome), while the others involved either A. carde-

nasii or A. batizocoi (B‐genome) and A. duranensis (A‐genome) or their

combinations. In earlier studies, a mean oil concentration of 41%–
61% and protein concentration of 15%–31% was reported among

160 cultivated elite breeding lines evaluated over six environments

(Janila, Manohar, Nagesh, Variath, & Nigam, 2016). Given the vast

genetic variability available in cultivated gene pool, the IDs can be

useful if they contribute new alleles to oil and protein concentration

not available in cultivated gene pool. Oil concentration of 48%–50%
and protein concentration of 29%–31% were reported in a subset of

best 18 accessions belonging to A. hypogaea subsp. fastigiata and

subsp. hypogaea selected from 184 accessions of minicore collection

at ICRISAT (Upadhyaya, Mukri, Nadaf, & Singh, 2012). Huang et al.

(2012) reported oil concentration in the range of 51%–63% among

72 wild Arachis accessions tested over 3 years.

Variability was also observed for oleic, linoleic and palmitic fatty

acids but no high oleic lines were detected. The high oleic check

SunOleic 95R recorded an oleic acid concentration of 82% in the

study. Oleic acid concentration of the IDs varied from 34 to 49%.

Palmitic acid, stearic acid and linoleic acid concentrations varied

between 11.2%–13.2%, 1.4%–2.5% and 30.1%–42.9%, respectively,

among the IDs.

Allele mining studies using allele‐specific markers for ahFAD2A and

ahFAD2B revealed that the derivatives ICGV 06175, NRCGCSs ‐227, ‐
161, ‐157, ‐138, ‐421 and VGs 0517, 1002, 1007, 1008, 1010 and

1016 had ahFAD2A-mutant allele with oleic acid concentrations rang-

ing from 36% to 49%. They were derived from nine different wild spe-

cies with either AA‐, BB‐ or EE‐genomes (Table 1). No IDs were

reported with ahFAD2B‐mutant allele. The nonavailability of high oleic

lines among the IDs indicates that both ahFAD2A- and ahFAD2B‐
mutant alleles are important for the high oleic trait in groundnut.

TABLE 6 Rust‐resistant alleles in interspecific derivatives using specific markers linked to the QTL governing rust resistance

Source of resistance Genotypes

Rust score
Range (90
DAS)

Chromosome A03

GM1536 IPAHM103 GM2079 GM2301

A. cardenasii GPBD 4 2.0–3.0 + + + +

ICGVs 00005, 01265, 02323, 03057, 10150, 10290,

11417, 11447 and 98373

2.0–2.2 + + + +

ICGV 04157, VG0437 2.7 * + + +

ICGVs 10221, 11009 and VGs 0410, 0411 and 0430 2.2–3.2 * * + +

A. batizocoi &

A. duranensis

ICGVs 00248, 01361, 02411, 04071, 05097, 06175,

07213, 99052, 09138, 10179, 11379, 11464 and 98293

2.00–2.52 + + + +

ICGV 06157 2.2 * + + +

A. cardenasii & A. sps

Manfredi‐5
ICGV 00068 2.0 * + + +

A. batizocoi,

A. duranensis &

A. cardenasii

ICGV 10121 2.6 + + + +

Notes. “+” indicates the presence of GPBD 4 specific peaks; “*” indicates different peak compared to GPBD 4.

F IGURE 1 The susceptible and resistant interspecific derivatives
in disease screening nursery at 90 DAS during 2015 rainy season at
ICRISAT‐Patancheru
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4.4 | Trait association

Negative significant phenotypic and genotypic correlation was

observed between pod yield per hectare and disease score of LLS at

75 and 90 DAS (Table 5). Thus, pod yield under disease pressure can

be used as selection criteria. The incidence of rust was positively

correlated with LLS at different stages of observation. This strong

correlation can be corroborated with identification of a major QTL

governing rust resistance which was also found to govern LLS resis-

tance in groundnut (Khedikar et al., 2010; Pandey et al., 2017).

Pod yield per hectare showed a strong positive association with

seed yield per hectare and also with HSW. Thus, selection of geno-

types combining high pod yield, seed yield and HSW is possible in

early generations. Oil concentration was negatively correlated with

protein concentration. The inverse relationship between oil and pro-

tein concentration was earlier reported in several studies (Jivani et

al., 2012). Among the fatty acids, linoleic acid showed a strong nega-

tive correlation with oleic acid concentration and positive correlation

with palmitic acid concentration. Thus, increasing the oleic acid con-

centration in groundnut will result in concomitant reduction in lino-

leic acid and palmitic acid concentration.

4.5 | Mining for rust‐ and LLS‐resistant alleles

Genotyping for major effect QTLs governing rust and LLS on A02

and A03 chromosomes was performed on a set of 32 IDs derived

from four wild species (A. batizocoi, A. duranensis, A. cardenasii and

Arachis sps Manfredi‐5), with GPBD 4 as the control. All the deriva-

tives showed peaks similar to GPBD 4 for the linked markers on

A03 (GM2079 and GM2301) (Table 6). However, ICGVs 04157,

06157, 00068 and VG 0437 had different peaks for GM1536, while

ICGV 10221, ICGV 11009, VGs 0410, 0411 and 0430 had different

peaks for GM1536 and IPAHM103. The phenotypic score of the

selected IDs varied from 2.0 to 3.2 indicating that all the selected

derivatives are resistant to rust. The selected ICGV and VG lines

involved single or combinations of the four wild species, A. batizocoi,

A. duranensis, A. cardenasii and Arachis sps Manfredi‐5, indicating

their potential to contribute alleles for rust resistance. The results

based on this preliminary analysis showed similarity between the

resistance alleles of IDs derived from A. cardenasii and GPBD 4, a

cultivated genotype carrying the resistance alleles from A. cardenasii.

Nevertheless, it will be interesting to conduct further sequence‐
based analysis to see whether these lines also share similar sequence

variations in resistance genes controlling foliar disease resistance. A

total of nine germplasm accessions belonging to subspecies hypogaea

botanical variety hypogaea were reported as resistant to rust using

validated molecular markers (Yole, Upadhyaya, & Uzun, 2016).

A recent study in groundnut has reported that resistance for LLS

is conferred by two genomic regions located on chromosome A03

and A02 (Pandey et al., 2017). The rust‐resistant markers on chro-

mosome A03 also explained upto 67.98% PVE for LLS (Sujay et al.,

2012). A total of seven markers, four on chromosome A03 and three

TABLE 7 LLS‐resistant alleles in interspecific derivatives using specific markers linked to the QTL governing LLS resistance

Source of
resistance Genotypes

LLS
score
Range
(90 DAS)

Chromosome A03 Chromosome A02

GM1536 IPAHM103 GM2079 GM2301 SEQ8D09 GM2032 GM1009a

A. cardenasii GPBD 4 2.0–3.0 + + + + + + +

ICGVs 00005, 02323, 10150,

11417 and 11447

4.3–4.5 + + + + + + +

ICGVs 01265, 03057, 10290 and

98373

5.0–5.8

ICGVs 10221, 11009, and VGs

0410, 0411 and 0430

6.0–6.5 * * + + + + +

VG 0437, ICGV 04157 6.0 * + + + + + */+

A. batizocoi &

A. duranensis

ICGVs 00248, 02411, 04071,

05097, 06175, 07213, 99052,

09138, 10179, 11379 and 98293

3.0–4.5 + + + + + + +

ICGVs 11464 and 01361 4.8–6.0

ICGV 06157 5.5 * + + + + + +

A. cardenasii &

A. sps

Manfredi‐5

ICGV 00068 4.8 * + + + + + +

A. batizocoi,

A. duranensis

&

A. cardenasii

ICGV 10121 4.0 + + + + + + +

Notes. “+” indicates the presence of GPBD 4 specific peaks; “*” indicates different peak compared to GPBD 4.
aDifferent peak observed only for VG 0437.
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on chromosome A02, were used to screen 32 IDs (score 3.0–6.5) for
LLS resistance. Screening the set using three LLS‐specific markers on

A02 did not reveal any peak differences with GPBD 4, except for

VG 0437 for the marker GM1009 (Table 7). When the markers

linked to chromosome A03 was compared to GPBD 4, several IDs

exhibited similar peaks as GPBD 4, but they recorded a disease

score of 4.0–6.0 (Table 7). Some derivatives VG 0410, VG 0411, VG

0430, VG 0437, ICGVs 10221, 11009, 04157, 06157 and 00068 did

not exhibit the resistant peak for the A03 region and recorded a dis-

ease score of 4.8–6.5. All the LLS‐resistant derivatives have shown

similar peaks to GPBD 4. The ICGVs 01265, 03057, 10290, 98373

derived from A. cardenasii, in spite of their similarity to GPBD 4,

showed higher susceptibility to LLS (score 5.0–5.8). The conditioning

for minor QTLs in GPBD 4 may have contributed to the higher level

of resistance to LLS compared to the IDs that conform to the same

QTL region. Both major and minor QTLs were reported to be

involved in governing resistance to rust and LLS in groundnut (Khe-

dikar et al., 2010; Pandey et al., 2017). Our recent study on intro-

gression lines derived from GBPD 4 in the background of TAG 24,

JL 24 and ICGV 91114 also suggests significant contribution of

minor QTLs for resistance besides the major effect QTL (Janila, Pan-

dey et al., 2016).

5 | CONCLUSION

Evaluation of the IDs identified foliar fungal disease‐resistant sources
derived from three different wild species other than A. cardenasii.

ICGVs 05097, 02411, 11379, 10121, 10179 and 00248 with multi-

ple disease resistance and superior pod yield performance were

identified for use as parents in breeding programmes. These lines

were derived from two different wild species with either AA (A. du-

ranensis and A. cardenasii) or BB‐genome (A. batizocoi) and it may be

possible that new alleles for resistance or yield may be identified

from these derivatives. These IDs can be directly utilized in breeding

programme.

Allele mining studies for ahFAD2‐mutant alleles of A‐ and B‐gen-
omes in ID revealed that ahFAD2A mutation is common, whereas

ahFAD2B is rare. Genotypes positive for ahFAD2A‐mutant allele are

derived from nine different wild species. Oleic acid concentration in

these lines varied from 36% to 49%. Genotyping identified few rust‐
resistant lines with different alleles from GPBD 4, which needs to be

studied further prior to their utilization in breeding. The alleles for

LLS were not found to confer better resistance among the IDs than

GPBD 4 or ICGV 86855 (parent of GPBD 4).
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