30 research outputs found

    Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To get insight into molecular mechanisms underlying insulin resistance, we compared acute in vivo effects of insulin on adipose tissue transcriptional profiles between obese insulin-resistant and lean insulin-sensitive women.</p> <p>Methods</p> <p>Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 hours of intravenously maintained euglycemic hyperinsulinemia from 9 insulin-resistant and 11 insulin-sensitive females. Gene expression was measured using Affymetrix HG U133 Plus 2 microarrays and qRT-PCR. Microarray data and pathway analyses were performed with Chipster v1.4.2 and by using in-house developed nonparametric pathway analysis software.</p> <p>Results</p> <p>The most prominent difference in gene expression of the insulin-resistant group during hyperinsulinemia was reduced transcription of nuclear genes involved in mitochondrial respiration (mitochondrial respiratory chain, GO:0001934). Inflammatory pathways with complement components (inflammatory response, GO:0006954) and cytokines (chemotaxis, GO:0042330) were strongly up-regulated in insulin-resistant as compared to insulin-sensitive subjects both before and during hyperinsulinemia. Furthermore, differences were observed in genes contributing to fatty acid, cholesterol and triglyceride metabolism (FATP2, ELOVL6, PNPLA3, SREBF1) and in genes involved in regulating lipolysis (ANGPTL4) between the insulin-resistant and -sensitive subjects especially during hyperinsulinemia.</p> <p>Conclusions</p> <p>The major finding of this study was lower expression of mitochondrial respiratory pathway and defective induction of lipid metabolism pathways by insulin in insulin-resistant subjects. Moreover, the study reveals several novel genes whose aberrant regulation is associated with the obese insulin-resistant phenotype.</p

    Susceptibility of Pancreatic Beta Cells to Fatty Acids Is Regulated by LXR/PPARα-Dependent Stearoyl-Coenzyme A Desaturase

    Get PDF
    Chronically elevated levels of fatty acids-FA can cause beta cell death in vitro. Beta cells vary in their individual susceptibility to FA-toxicity. Rat beta cells were previously shown to better resist FA-toxicity in conditions that increased triglyceride formation or mitochondrial and peroxisomal FA-oxidation, possibly reducing cytoplasmic levels of toxic FA-moieties. We now show that stearoyl-CoA desaturase-SCD is involved in this cytoprotective mechanism through its ability to transfer saturated FA into monounsaturated FA that are incorporated in lipids. In purified beta cells, SCD expression was induced by LXR- and PPARα-agonists, which were found to protect rat, mouse and human beta cells against palmitate toxicity. When their SCD was inhibited or silenced, the agonist-induced protection was also suppressed. A correlation between beta cell-SCD expression and susceptibility to palmitate was also found in beta cell preparations isolated from different rodent models. In mice with LXR-deletion (LXRβ-/- and LXRαβ-/-), beta cells presented a reduced SCD-expression as well as an increased susceptibility to palmitate-toxicity, which could not be counteracted by LXR or PPARα agonists. In Zucker fatty rats and in rats treated with the LXR-agonist TO1317, beta cells show an increased SCD-expression and lower palmitate-toxicity. In the normal rat beta cell population, the subpopulation with lower metabolic responsiveness to glucose exhibits a lower SCD1 expression and a higher susceptibility to palmitate toxicity. These data demonstrate that the beta cell susceptibility to saturated fatty acids can be reduced by stearoyl-coA desaturase, which upon stimulation by LXR and PPARα agonists favors their desaturation and subsequent incorporation in neutral lipids

    Development and Use of Intranet-Based CAFM System

    No full text
    In the past CAFM system study, we proposed a system for supporting data-processing and plan-drafting, on the assumption that it is to be used in different stages of Building Construction, Interior Spatial Planning and Maintenance. By the above system, we have developed a CAFM system using the DBMS (Data Base Management System), CAD (Computer Aided Design) and Spread Sheet as the analysis tools. Management system with FM-related data editing functions such as'Input','Modification','Deleting', etc, are proposed. To promote the FM business smoothly, information should be shared among departments concerned, and informative administrative framework should be organized. This time, we propose a prototype of CAFM system on INTRANET which is developed for general users that permits browsing and downloading of system database

    Development of the CAFM System for Life Cycle Management

    No full text
    The purpose of this research is to develop the CAFM system that supports the cost management related to the building maintenance. Furthermore, we examine the possible implementation of CAFM as the supporting tools of medium-long term planning and fiscal year planning of the Facility Management. The function of the building-maintenance-system-oriented-Life-Cycle Cost (LCC)-supporting CAFM system is the feasibility of reference with the relating information database, which are later used for comparative analysis. The following is a detailed explanation of its functions:1) Outlined data display function of the building parts and materials. 2) 3-dimensional CAD models management. 3) LCC display function of building parts and materials. 4) Search function. This system supports the development of an efficient maintenance planning, and an efficient undertaking of the maintenance program. The concrete effects are as follow, (1) Cost-efficient building maintenance planning. (2) Building value increased by appropriate budget planning of maintenance. (3) Processing load and time are shortened. (4) Human mistakes are decreased

    Synthesis of fluorinated isoxazoles using SelectfluorTM: preparation and characterization of 4-fluoroisoxazole, 4,4,5-trifluoroisoxazoline and 4,4-difluoro-5-hydroxyisoxazoline systems from one-pot and multi-step processes

    Get PDF
    3,5-Disubstituted 4-fluoroisoxazole, 4,4,5-trifluoroisoxazoline and 4,4-difluoro-5-hydroxyisoxazoline products were obtained from reaction of the corresponding isoxazoles with SelectfluorTM depending upon the reaction conditions. Although the fluorinations proceeded using conventional heating, microwave (μW) irradiation considerably shortened reaction times and enabled a high yielding one-pot cascade fluorination-cyclization from simple diketone substrates. In addition, a related 4-fluoroisoxazole-3-carboxyamide derivative was synthesized
    corecore