396 research outputs found

    A multi-scale study on the bubble dynamics of cryogenic cavitation

    Full text link
    This study aims to construct a multi-scale cavitation model for unsteady cryogenic cavitation CFD. Many elementary physical processes of bubbles (i.e, nucleation, growth/shrink, evaporation/condensation, coalescence/fission, collapse, bubblebubble interaction, bubble-turbulence interaction, and so on) emerge in cryogenic cavitation where some of the processes have not been understood well. In this paper, we mainly focused the molecular processes in homogeneous liquid-vapor nucleation with noncondensable gas solution by using Molecular Dynamics (MD) method. Bubble nucleation in liquid oxygen including helium, nitrogen, or argon was simulated. Molecular interaction was given by Lennard-Jones potential, and basically, each potential parameter was defined so that a saturation curve obtained by MD data was consistent with an experimental value. In the case that helium was impurity, a bubble nucleus was formed by density fluctuation at a lower concentration while a cluster constituted with helium molecules formed a bubble nucleus at a higher concentration, and the nucleation point becomes closer to the saturation point of pure oxygen when helium molecules form clusters. On the other hand, in the case that nitrogen or argon was the impurity, the above-mentioned clustering was not observed clearly at a concentration where helium made clusters, and these impurities have weaker action to make clusters and cavitation bubble nuclei compared with helium.http://deepblue.lib.umich.edu/bitstream/2027.42/84285/1/CAV2009-final102.pd

    Microscopic features of moving traffic jams

    Full text link
    Empirical and numerical microscopic features of moving traffic jams are presented. Based on a single vehicle data analysis, it is found that within wide moving jams, i.e., between the upstream and downstream jam fronts there is a complex microscopic spatiotemporal structure. This jam structure consists of alternations of regions in which traffic flow is interrupted and flow states of low speeds associated with "moving blanks" within the jam. Empirical features of the moving blanks are found. Based on microscopic models in the context of three-phase traffic theory, physical reasons for moving blanks emergence within wide moving jams are disclosed. Structure of moving jam fronts is studied based in microscopic traffic simulations. Non-linear effects associated with moving jam propagation are numerically investigated and compared with empirical results.Comment: 19 pages, 12 figure

    One-Center Charge Transfer Transitions in Manganites

    Full text link
    In frames of a rather conventional cluster approach, which combines the crystal field and the ligand field models we have considered different charge transfer (CT) states and O 2p-Mn 3d CT transitions in MnO69_{6}^{9-} octahedra. The many-electron dipole transition matrix elements were calculated using the Racah algebra for the cubic point group. Simple "local" approximation allowed to calculate the relative intensity for all dipole-allowed ππ\pi -\pi and σσ\sigma -\sigma CT transitions. We present a self-consistent description of the CT bands in insulating stoichiometric LaMn3+^{3+}O3_3 compound with the only Mn3+^{3+} valent state and idealized octahedral MnO69_{6}^{9-} centers which allows to substantially correct the current interpretation of the optical spectra. Our analysis shows the multi-band structure of the CT optical response with the weak low-energy edge at 1.7 eV, associated with forbidden t1g(π)egt_{1g}(\pi)-e_{g} transition and a series of the weak and strong dipole-allowed high-energy transitions starting from 2.5 and 4.5 eV, respectively, and extending up to nearly 11 eV. The most intensive features are associated with two strong composite bands near 4.6÷4.74.6\div 4.7 eV and 8÷98\div 9 eV, respectively, resulting from the superposition of the dipole-allowed σσ\sigma -\sigma and ππ\pi -\pi CT transitions. These predictions are in good agreement with experimental spectra. The experimental data point to a strong overscreening of the crystal field parameter DqDq in the CT states of MnO69_{6}^{9-} centers.Comment: 10 pages, 3 figure

    Cellular automata approach to three-phase traffic theory

    Full text link
    The cellular automata (CA) approach to traffic modeling is extended to allow for spatially homogeneous steady state solutions that cover a two dimensional region in the flow-density plane. Hence these models fulfill a basic postulate of a three-phase traffic theory proposed by Kerner. This is achieved by a synchronization distance, within which a vehicle always tries to adjust its speed to the one of the vehicle in front. In the CA models presented, the modelling of the free and safe speeds, the slow-to-start rules as well as some contributions to noise are based on the ideas of the Nagel-Schreckenberg type modelling. It is shown that the proposed CA models can be very transparent and still reproduce the two main types of congested patterns (the general pattern and the synchronized flow pattern) as well as their dependence on the flows near an on-ramp, in qualitative agreement with the recently developed continuum version of the three-phase traffic theory [B. S. Kerner and S. L. Klenov. 2002. J. Phys. A: Math. Gen. 35, L31]. These features are qualitatively different than in previously considered CA traffic models. The probability of the breakdown phenomenon (i.e., of the phase transition from free flow to synchronized flow) as function of the flow rate to the on-ramp and of the flow rate on the road upstream of the on-ramp is investigated. The capacity drops at the on-ramp which occur due to the formation of different congested patterns are calculated.Comment: 55 pages, 24 figure

    Macroscopic traffic models from microscopic car-following models

    Full text link
    We present a method to derive macroscopic fluid-dynamic models from microscopic car-following models via a coarse-graining procedure. The method is first demonstrated for the optimal velocity model. The derived macroscopic model consists of a conservation equation and a momentum equation, and the latter contains a relaxation term, an anticipation term, and a diffusion term. Properties of the resulting macroscopic model are compared with those of the optimal velocity model through numerical simulations, and reasonable agreement is found although there are deviations in the quantitative level. The derivation is also extended to general car-following models.Comment: 12 pages, 4 figures; to appear in Phys. Rev.

    Changing Selective Pressure during Antigenic Changes in Human Influenza H3

    Get PDF
    The rapid evolution of influenza viruses presents difficulties in maintaining the optimal efficiency of vaccines. Amino acid substitutions result in antigenic drift, a process whereby antisera raised in response to one virus have reduced effectiveness against future viruses. Interestingly, while amino acid substitutions occur at a relatively constant rate, the antigenic properties of H3 move in a discontinuous, step-wise manner. It is not clear why this punctuated evolution occurs, whether this represents simply the fact that some substitutions affect these properties more than others, or if this is indicative of a changing relationship between the virus and the host. In addition, the role of changing glycosylation of the haemagglutinin in these shifts in antigenic properties is unknown. We analysed the antigenic drift of HA1 from human influenza H3 using a model of sequence change that allows for variation in selective pressure at different locations in the sequence, as well as at different parts of the phylogenetic tree. We detect significant changes in selective pressure that occur preferentially during major changes in antigenic properties. Despite the large increase in glycosylation during the past 40 years, changes in glycosylation did not correlate either with changes in antigenic properties or with significantly more rapid changes in selective pressure. The locations that undergo changes in selective pressure are largely in places undergoing adaptive evolution, in antigenic locations, and in locations or near locations undergoing substitutions that characterise the change in antigenicity of the virus. Our results suggest that the relationship of the virus to the host changes with time, with the shifts in antigenic properties representing changes in this relationship. This suggests that the virus and host immune system are evolving different methods to counter each other. While we are able to characterise the rapid increase in glycosylation of the haemagglutinin during time in human influenza H3, an increase not present in influenza in birds, this increase seems unrelated to the observed changes in antigenic properties

    Single-vehicle data of highway traffic - a statistical analysis

    Full text link
    In the present paper single-vehicle data of highway traffic are analyzed in great detail. By using the single-vehicle data directly empirical time-headway distributions and speed-distance relations can be established. Both quantities yield relevant information about the microscopic states. Several fundamental diagrams are also presented, which are based on time-averaged quantities and compared with earlier empirical investigations. In the remaining part time-series analyses of the averaged as well as the single-vehicle data are carried out. The results will be used in order to propose objective criteria for an identification of the different traffic states, e.g. synchronized traffic.Comment: 12 pages, 19 figures, RevTe

    Criterion for traffic phases in single vehicle data and empirical test of a microscopic three-phase traffic theory

    Full text link
    A microscopic criterion for distinguishing synchronized flow and wide moving jam phases in single vehicle data measured at a single freeway location is presented. Empirical local congested traffic states in single vehicle data measured on different days are classified into synchronized flow states and states consisting of synchronized flow and wide moving jam(s). Then empirical microscopic characteristics for these different local congested traffic states are studied. Using these characteristics and empirical spatiotemporal macroscopic traffic phenomena, an empirical test of a microscopic three-phase traffic flow theory is performed. Simulations show that the microscopic criterion and macroscopic spatiotemporal objective criteria lead to the same identification of the synchronized flow and wide moving jam phases in congested traffic. It is found that microscopic three-phase traffic models can explain both microscopic and macroscopic empirical congested pattern features. It is obtained that microscopic distributions for vehicle speed difference as well as fundamental diagrams and speed correlation functions can depend on the spatial co-ordinate considerably. It turns out that microscopic optimal velocity (OV) functions and time headway distributions are not necessarily qualitatively different, even if local congested traffic states are qualitatively different. The reason for this is that important spatiotemporal features of congested traffic patterns are it lost in these as well as in many other macroscopic and microscopic traffic characteristics, which are widely used as the empirical basis for a test of traffic flow models, specifically, cellular automata traffic flow models.Comment: 27 pages, 16 figure

    The Fundamental Diagram of Pedestrian Movement Revisited

    Full text link
    The empirical relation between density and velocity of pedestrian movement is not completely analyzed, particularly with regard to the `microscopic' causes which determine the relation at medium and high densities. The simplest system for the investigation of this dependency is the normal movement of pedestrians along a line (single-file movement). This article presents experimental results for this system under laboratory conditions and discusses the following observations: The data show a linear relation between the velocity and the inverse of the density, which can be regarded as the required length of one pedestrian to move. Furthermore we compare the results for the single-file movement with literature data for the movement in a plane. This comparison shows an unexpected conformance between the fundamental diagrams, indicating that lateral interference has negligible influence on the velocity-density relation at the density domain 1m2<ρ<5m21 m^{-2}<\rho<5 m^{-2}. In addition we test a procedure for automatic recording of pedestrian flow characteristics. We present preliminary results on measurement range and accuracy of this method.Comment: 13 pages, 9 figure
    corecore