552 research outputs found
Two-Pion Exchange Currents in Photodisintegration of the Deuteron
Chiral effective field theory (ChEFT) is a modern framework to analyze the
properties of few-nucleon systems at low energies. It is based on the most
general effective Lagrangian for pions and nucleons consistent with the chiral
symmetry of QCD. For energies below the pion-production threshold it is
possible to eliminate the pionic degrees of freedom and derive nuclear
potentials and nuclear current operators solely in terms of the nucleonic
degrees of freedom. This is very important because, despite a lot of experience
gained in the past, the consistency between two-nucleon forces, many-nucleon
forces and the corresponding current operators has not been achieved yet. In
this presentation we consider the recently derived long-range two-pion exchange
(TPE) contributions to the nuclear current operator which appear at next-to
leading order of the chiral expansion. These operators do not contain any free
parameters. We study their role in the deuteron photodisintegration reaction
and compare our predictions with experimental data. The bound and scattering
states are calculated using five different chiral N2LO nucleon-nucleon (NN)
potentials which allows to estimate the theoretical uncertainty at a given
order in the chiral expansion. For some observables the results are very close
to the reference predictions based on the AV18 NN potential and the current
operator (partly) consistent with this force.Comment: Contribution to the 12th International Conference on Meson-Nucleon
Physics and the Structure of the Nucleon (MENU2010), Williamsburg, USA, May
31-June 4, 201
Simultaneous Search and Monitoring by Unmanned Aerial Vehicles
Simultaneous Search and Monitoring (SSM) is studied in this paper for a single Unmanned Aerial Vehicle (UAV) searcher and multiple moving ground targets. Searching for unknown targets and monitoring known targets are two intrinsically related problems, but have mostly been addressed in isolation. We combine the two problems with a joint objective function in a Partially Observable Markov Decision Process (POMDP). An online policy planning approach is proposed to plan a reactive policy to solve the POMDP, using both MonteCarlo sampling and Simulated Annealing. The simulation result shows that the searcher will successfully find unknown targets without losing known ones. We demonstrate, with a theoretical proof and comparative simulations, that the proposed approach can deliver a better performance than conventional foresight optimization methods
Impact of the MLC on the MRI field distortion of a prototype MRI-linac.
PURPOSE: To cope with intrafraction tumor motion, integrated MRI-linac systems for real-time image guidance are currently under development. The multileaf collimator (MLC) is a key component in every state-of-the-art radiotherapy treatment system, allowing for accurate field shaping and tumor tracking. This work quantifies the magnetic impact of a widely used MLC on the MRI field homogeneity for such a modality. METHODS: The finite element method was employed to model a MRI-linac assembly comprised of a 1.0 T split-bore MRI magnet and the key ferromagnetic components of a Varian Millennium 120 MLC, namely, the leaves and motors. Full 3D magnetic field maps of the system were generated. From these field maps, the peak-to-peak distortion within the MRI imaging volume was evaluated over a 30 cm diameter sphere volume (DSV) around the isocenter and compared to a maximum preshim inhomogeneity of 300 μT. Five parametric studies were performed: (1) The source-to-isocenter distance (SID) was varied from 100 to 200 cm, to span the range of a compact system to that with lower magnetic coupling. (2) The MLC model was changed from leaves only to leaves with motors, to determine the contribution to the total distortion caused by MLC leaves and motors separately. (3) The system was configured in the inline or perpendicular orientation, i.e., the linac treatment beam was oriented parallel or perpendicular to the magnetic field direction. (4) The treatment field size was varied from 0 × 0 to 20×20 cm(2), to span the range of clinical treatment fields. (5) The coil currents were scaled linearly to produce magnetic field strengths B0 of 0.5, 1.0, and 1.5 T, to estimate how the MLC impact changes with B0. RESULTS: (1) The MLC-induced MRI field distortion fell continuously with increasing SID. (2) MLC leaves and motors were found to contribute to the distortion in approximately equal measure. (3) Due to faster falloff of the fringe field, the field distortion was generally smaller in the perpendicular beam orientation. The peak-to-peak DSV distortion was below 300 μT at SID≥130 cm (perpendicular) and SID≥140 cm (inline) for the 1.0 T design. (4) The simulation of different treatment fields was identified to cause dynamic changes in the field distribution. However, the estimated residual distortion was below 1.2 mm geometric distortion at SID≥120 cm (perpendicular) and SID≥130 cm (inline) for a 10 mT/m frequency-encoding gradient. (5) Due to magnetic saturation of the MLC materials, the field distortion remained constant at B0>1.0 T. CONCLUSIONS: This work shows that the MRI field distortions caused by the MLC cannot be ignored and must be thoroughly investigated for any MRI-linac system. The numeric distortion values obtained for our 1.0 T magnet may vary for other magnet designs with substantially different fringe fields, however the concept of modest increases in the SID to reduce the distortion to a shimmable level is generally applicable
Passive magnetic shielding in MRI-Linac systems.
Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration
Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy
PURPOSE: Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. METHODS: Sintered heavy tungsten alloys typically contain >90% tungsten and <10% of a combination of iron, nickel, and copper binders. Samples of eight different grades of sintered heavy tungsten alloys with varying binder content were investigated. Using a superconducting quantum interference detector magnetometer, the induced magnetic moment m was measured for each sample as a function of applied external field H0 and the BH curve derived. RESULTS: The iron content of the alloys was found to play a dominant role, directly influencing the magnetization M and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%-16% was measured. CONCLUSIONS: The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered heavy tungsten alloys
A Multisensor Evaluation of the Asymmetric Convective Model, Version 2 in Eastern Texas
Although there have been a variety of planetary boundary layer (PBL) schemes developed to represent the effects of turbulence in daytime convective conditions, uncertainties correlated with these schemes remain a large source of inaccuracy in meteorology and air quality model simulations. This study evaluates a new combined local and nonlocal closure PBL scheme, the Asymmetric Convective Model, version 2 (ACM2) in eastern Texas against PBL observations taken from ten radar wind profilers, a ground-based lidar, and multiple daytime radiosonde balloon launches. Comparisons are made between these observations and outputs from the Weather Research and Forecasting (WRF) model version 3.1 with the ACM2 PBL scheme option, as well as outputs from the meteorological modeling that is currently being used to develop ozone control strategies in the HGB area. Results show that the WRF-ACM2 combination is much more accurate at representing the spatial and temporal evolution of the PBL in Eastern Texas
Scalable target detection for large robot teams
In this paper, we present an asynchronous display method, coined image queue, which allows operators to search through a large amount of data gathered by autonomous robot teams. We discuss and investigate the advantages of an asynchronous display for foraging tasks with emphasis on Urban Search and Rescue. The image queue approach mines video data to present the operator with a relevant and comprehensive view of the environment in order to identify targets of interest such as injured victims. It fills the gap for comprehensive and scalable displays to obtain a network-centric perspective for UGVs. We compared the image queue to a traditional synchronous display with live video feeds and found that the image queue reduces errors and operator's workload. Furthermore, it disentangles target detection from concurrent system operations and enables a call center approach to target detection. With such an approach we can scale up to very large multi-robot systems gathering huge amounts of data that is then distributed to multiple operators. Copyright 2011 ACM
Digital image processing methods for the evaluation of optical anisotropy effects in tempered architectural glass using photoelastic measurements
In the present paper, optical anisotropy effects in architectural glass are evaluated using digital image processing. Hereby, thermally toughened glass panes were analyzed quantitatively using a circular polariscope. Glass subjected to externally applied stresses or residual stresses becomes birefringent. Polarized light on birefringent materials causes interference colors (iridescence), referred to as anisotropies, which affect the optical appearance of glass panes in building envelopes. Thermally toughened glass, such as toughened safety glass or heat strengthened glass, show these iridescences due to thermally induced residual stress differences. RGB-photoelastic full-field methods allow the quantitative measurement of anisotropies, since the occurring interference colors are related to the measured retardation values. By calibrating the circular polariscope, retardation images of thermally toughened glass panes are generated from non-directional isochromatic images using computer algorithms. The analysis of the retardation images and the evaluation of the anisotropy quality of the glass is of great interest in order to detect and sort out very low quality glass panes directly in the production process. Therefore, in this paper retardation images are acquired from different thermally toughened glass panes then different image processing methods are presented and applied. It is shown that a general definition of exclusion zones, e.g. near edges is required prior to the evaluation. In parallel, the limitations in the application of first-order statistical and threshold methods are presented. The intend of the investigation is the extension of the texture analysis based on the generation of Grey Level Co-occurrence Matrices, where the spatial arrangement of the retardation values is considered in the evaluation. For the first time, the results of textural features of different glass pane formats could be compared using reference areas and geometry factors. By reduction of the original image size, the computation time of textural analysis algorithms could be remarkably speeded up, while the textural features remained the same. Finally, the knowledge gained from these investigations is used to determine uniform texture features, which also includes the pattern of anisotropy effects in the evaluation of thermally toughened glass. Together with a global evaluation criterion this can now be implemented in commercial anisotropy measurement systems for quality control of tempered architectural glass
- …