15,624 research outputs found

    New Results on e+e- Line Emission in U+Ta Collisions

    Full text link
    We present new results obtained from a series of follow-up e+e- coincidence measurements in heavy-ion collisions, utilizing an improved experimental set-up at the double-Orange beta-spectrometer of GSI. The collision system U+Ta was reinvestigated in three independent runs at beam energies in the range (6.0-6.4)xA MeV and different target thicknesses, with the objective to reproduce a narrow sum-energy e+e- line at ~635 keV observed previously in this collision system. At improved statistical accuracy, the line could not be found in these new data. For the ''fission'' scenario, an upper limit (1 sigma) on its production probability per collision of 1.3x10^{-8} can be set which has to be compared to the previously reported value of [4.9 +- 0.8 (stat.) +- 1.0 (syst)]x10^{-7}. In the light of the new results, a reanalysis of the old data shows that the continuous part of the spectrum at the line position is significantly higher than previously assumed, thus reducing the production probability of the line by a factor of two and its statistical significance to < 3.4sigma.Comment: 15 pages, standard LaTeX with 3 included PS figures; Submitted to Physics Letters

    First Energy and Angle differential Measurements of e^+e^- -pairs emitted by Internal Pair Conversion of excited Heavy Nuclei

    Get PDF
    We present the first energy and angle resolved measurements of e+e- pairs emitted from heavy nuclei (Z>=40) at rest by internal pair conversion (IPC) of transitions with energies of less than 2MeV as well as recent theoretical results using the DWBA method, which takes full account of relativistic effects, magnetic substates and finite size of the nucleus. The 1.76MeV E0 transition in Zr90 (Sr source) and the 1.77MeV M1 transition in Pb207 (Bi source) have been investigated experimentally using the essentially improved set-up at the double-ORANGE beta-spectrometer of GSI. The measurements prove the capability of the setup to cleanly identify the IPC pairs in the presence of five orders of magnitude higher beta- and gamma background from the same source and to yield essentially background-free sum spectra despite the large background. Using the ability of the ORANGE setup to directly determine the opening angle of the e+e- pairs, the angular correlation of the emitted pairs was measured. In the Zr90 case the correlation could be deduced for a wide range of energy differences of the pairs. The Zr90 results are in good agreement with recent theory. The angular correlation deduced for the M1 transition in Pb207 is in strong disagreement with theoretical predictions derived within the Born approximation and shows almost isotropic character. This is again in agreement with the new theoretical results.Comment: LaTeX, 28 pages incl. 10 PS figures; Accepted by Z.Phys.

    Propeller propulsion integration, phase 1

    Get PDF
    A bibliography was compiled of all readily available sources of propeller analytical and experimental studies conducted during the 1930 through 1960 period. A propeller test stand was developed for the measurement of thrust and torque characteristics of full scale general aviation propellers and installed in the LaRC 30 x 60 foot full scale wind tunnel. A tunnel entry was made during the January through February 1980 period. Several propellers were tested, but unforseen difficulties with the shaft thrust torque balance severely degraded the data quality

    A constitutive material model for nonlinear finite element structural analysis using an iterative matrix approach

    Get PDF
    A unified numerical method for the integration of stiff time dependent constitutive equations is presented. The solution process is directly applied to a constitutive model proposed by Bodner. The theory confronts time dependent inelastic behavior coupled with both isotropic hardening and directional hardening behaviors. Predicted stress-strain responses from this model are compared to experimental data from cyclic tests on uniaxial specimens. An algorithm is developed for the efficient integration of the Bodner flow equation. A comparison is made with the Euler integration method. An analysis of computational time is presented for the three algorithms

    Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution

    Get PDF
    Objectives (1) Analyze the relationship between intranasal airflow distribution and subjective nasal patency in healthy and nasal airway obstruction (NAO) cohorts using computational fluid dynamics (CFD). (2) Determine whether intranasal airflow distribution is an important objective measure of airflow sensation that should be considered in future NAO virtual surgery planning. Study Design Cross-sectional. Setting Academic tertiary medical center and academic dental clinic. Subjects and Methods Three-dimensional models of nasal anatomy were created based on computed tomography scans of 15 patients with NAO and 15 healthy subjects and used to run CFD simulations of nasal airflow and mucosal cooling. Subjective nasal patency was quantified with a visual analog scale (VAS) and the Nasal Obstruction Symptom Evaluation (NOSE). Regional distribution of nasal airflow (inferior, middle, and superior) was quantified in coronal cross sections in the narrowest nasal cavity. The Pearson correlation coefficient was used to quantify the correlation between subjective scores and regional airflows. Results Healthy subjects had significantly higher middle airflow than patients with NAO. Subjective nasal patency had no correlation with inferior and superior airflows but a high correlation with middle airflow (|r| = 0.64 and |r| = 0.76 for VAS and NOSE, respectively). Anterior septal deviations tended to shift airflow inferiorly, reducing middle airflow and reducing mucosal cooling in some patients with NAO. Conclusion Reduced middle airflow correlates with the sensation of nasal obstruction, possibly due to a reduction in mucosal cooling in this region. Further research is needed to elucidate the role of intranasal airflow distribution in the sensation of nasal airflow

    Positron spectra from internal pair conversion observed in {238}U + {181}Ta collisions

    Get PDF
    We present new results from measurements and simulations of positron spectra, originating from 238U + 181Ta collisions at beam energies close to the Coulomb barrier. The measurements were performed using an improved experimental setup at the double-Orange spectrometer of GSI. Particular emphasis is put on the signature of positrons from Internal-Pair-Conversion (IPC) processes in the measured e+ energy spectra, following the de-excitation of electromagnetic transitions in the moving Ta-like nucleus. It is shown by Monte Carlo simulations that, for the chosen current sweeping procedure used in the present experiments, positron emission from discrete IPC transitions can lead to rather narrow line structures in the measured energy spectra. The measured positron spectra do not show evidence for line structures within the statistical accuracy achieved, although expected from the intensities of the observed γ\gamma transitions (Eγ 12501600_{\gamma}~1250-1600 keV) and theoretical conversion coefficients. This is due to the reduced detection efficiency for IPC positrons, caused by the limited spatial and momentum acceptance of the spectrometer. A comparison with previous results, in which lines have been observed, is presented and the implications are discussed.Comment: LaTeX, 20 pages including 5 EPS figures; Accepted by Eur. Phys.Jour.
    corecore