12 research outputs found

    Interspecific competition delays recovery of Daphnia spp. populations from pesticide stress

    Get PDF
    Xenobiotics alter the balance of competition between species and induce shifts in community composition. However, little is known about how these alterations affect the recovery of sensitive taxa. We exposed zooplankton communities to esfenvalerate (0.03, 0.3, and 3 μg/L) in outdoor microcosms and investigated the long-term effects on populations of Daphnia spp. To cover a broad and realistic range of environmental conditions, we established 96 microcosms with different treatments of shading and periodic harvesting. Populations of Daphnia spp. decreased in abundance for more than 8 weeks after contamination at 0.3 and 3 μg/L esfenvalerate. The period required for recovery at 0.3 and 3 μg/L was more than eight and three times longer, respectively, than the recovery period that was predicted on the basis of the life cycle of Daphnia spp. without considering the environmental context. We found that the recovery of sensitive Daphnia spp. populations depended on the initial pesticide survival and the related increase of less sensitive, competing taxa. We assert that this increase in the abundance of competing species, as well as sub-lethal effects of esfenvalerate, caused the unexpectedly prolonged effects of esfenvalerate on populations of Daphnia spp. We conclude that assessing biotic interactions is essential to understand and hence predict the effects and recovery from toxicant stress in communities

    Trait modality distribution of aquatic macrofauna communities as explained by pesticides and water chemistry

    Get PDF
    Analyzing functional species’ characteristics (species traits) that represent physiological, life history and morphological characteristics of species help understanding the impacts of various stressors on aquatic communities at field conditions. This research aimed to study the combined effects of pesticides and other environmental factors (temperature, dissolved oxygen, dissolved organic carbon, floating macrophytes cover, phosphate, nitrite, and nitrate) on the trait modality distribution of aquatic macrofauna communities. To this purpose, a field inventory was performed in a flower bulb growing area of the Netherlands with significant variation in pesticides pressures. Macrofauna community composition, water chemistry parameters and pesticide concentrations in ditches next to flower bulb fields were determined. Trait modalities of nine traits (feeding mode, respiration mode, locomotion type, resistance form, reproduction mode, life stage, voltinism, saprobity, maximum body size) likely to indicate pesticides impacts were analyzed. According to a redundancy analysis, phosphate -and not pesticides- constituted the main factor structuring the trait modality distribution of aquatic macrofauna. The functional composition could be ascribed for 2–4 % to pesticides, and for 3–11 % to phosphate. The lack of trait responses to pesticides may indicate that species may have used alternative strategies to adapt to ambient pesticides stress. Biomass of animals exhibiting trait modalities related to feeding by predation and grazing, presence of diapause form or dormancy, reproduction by free clutches and ovoviviparity, life stage of larvae and pupa, was negatively correlated to the concentration of phosphate. Hence, despite the high pesticide pollution in the area, variation in nutrient-related stressors seems to be the dominant driver of the functional composition of aquatic macrofauna assembly in agricultural ditches. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10646-016-1671-5) contains supplementary material, which is available to authorized users

    Long-term effects of a catastrophic insecticide spill on stream invertebrates.

    No full text
    Accidental spills or illegal discharges of pesticides in aquatic ecosystems can lead to exposure levels that strongly exceed authorized pesticide concentrations, causing major impacts on aquatic ecosystems. Such short-term events often remain undetected in regular monitoring programs with infrequent sampling. In early spring 2015, we identified a catastrophic pesticide spill with the insecticide cypermethrin in the Holtemme River, Germany. Based on existing pre-event macroinvertebrate community data, we monitored the effects and recovery of the macroinvertebrate community for more than two years after the spill. Strong short-term effects were apparent for all taxa with the exception of Chironomidae and Tubificidae. Effects could also be observed on the community level as total abundance, taxa number and biomass strongly decreased. Total abundance and taxa number showed a fast recovery. Regarding long-term effects, the total biomass remained substantially below the pre-contamination level (76%) until the end of the study. Also the abundances of three taxa (Gammarus, Leuctra, Limnius Ad.) did not return to levels prior to the spill even after 26 months. This lack of the taxon-specific recovery was likely due to their long generation time and a low migration ability due to a restricted connectivity between the contaminated site and uncontaminated stream sections. These factors proved to be stronger predictors for the recovery than the pesticide tolerance. We revealed that the biological indicators SPEARpesticides and share of Ephemeroptera, Plecoptera and Trichoptera (EPT) are not suitable for the identification of such extreme events, when nearly all taxa are eradicated. Both indicators are functioning only when repeated stressors initiate long-term competitive replacement of sensitive by insensitive taxa. We conclude that pesticide spills can have significant long-term effects on stream macroinvertebrate communities. Regular ecological monitoring is imperative to identify such ecosystem impairments, combined with analytical chemistry methods to identify the potential sources of spills
    corecore