3,691 research outputs found

    Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests

    Get PDF
    There is a general trend of biodiversity loss at global, regional, national and local levels. To monitor this trend, international policy processes have created a wealth of indicators over the last two decades. However, genetic diversity indicators are regrettably absent from comprehensive bio-monitoring schemes. Here, we provide a review and an assessment of the different attempts made to provide such indicators for tree genetic diversity from the global level down to the level of the management unit. So far, no generally accepted indicators have been provided as international standards, nor tested for their possible use in practice. We suggest that indicators for monitoring genetic diversity and dynamics should be based on ecological and demographic surrogates of adaptive diversity as well as genetic markers capable of identifying genetic erosion and gene flow. A comparison of past and present genecological distributions (patterns of genetic variation of key adaptive traits in the ecological space) of selected species is a realistic way of assessing the trend of intra-specific variation, and thus provides a state indicator of tree genetic diversity also able to reflect possible pressures threatening genetic diversity. Revealing benefits of genetic diversity related to ecosystem services is complex, but current trends in plantation performance offer the possibility of an indicator of benefit. Response indicators are generally much easier to define, because recognition and even quantification of, e.g., research, education, breeding, conservation, and regulation actions and programs are relatively straightforward. Only state indicators can reveal genetic patterns and processes, which are fundamental for maintaining genetic diversity. Indirect indicators of pressure, benefit, or response should therefore not be used independently of state indicators. A coherent set of indicators covering diversity–productivity–knowledge–management based on the genecological approach is proposed for application on appropriate groups of tree species in the wild and in cultivation worldwide. These indicators realistically reflect the state, trends and potentials of the world’s tree genetic resources to support sustainable growth. The state of the genetic diversity will be based on trends in population distributions and diversity patterns for selected species. The productivity of the genetic resource of trees in current use will reflect the possible potential of mobilizing the resource further. Trends in knowledge will underpin the potential capacity for development of the resource and current management of the genetic resource itself will reveal how well we are actually doing and where improvements are required

    Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species

    Get PDF
    Cultivated tomato species develop leaf injury while grown in continuous light (CL). Growth, photosynthesis, carbohydrate metabolism and antioxidative enzyme activities of a cultivated (Solanum lycopersicum L. ‘Aromata’) and a wild tomato species (Solanum pimpinellifolium L.) were compared in this study aiming to analyse the species-specific differences and thermoperiod effects in responses to CL. The species were subjected to three photoperiodic treatments for 12 days in climate chambers: 16-h photoperiod with a light/dark temperature of 26/16ºC (P16D10 or control); CL with a constant temperature of 23ºC (P24D0); CL with a variable temperature of 26/16ºC (P24D10). The results showed that both species grown in CL had higher dry matter production due to the continuous photosynthesis and a subsequent increase in carbon gain. In S. lycopersicum, the rate of photosynthesis and the maximum photochemical efficiency of photosystem II declined in CL with the development of leaf chlorosis, reduction in the leaf chlorophyll content and a higher activity of antioxidative enzymes. The normal diurnal patterns of starch and sugar were only present under control conditions. The results demonstrated that CL conditions mainly affected the photosynthetic apparatus of a cultivated species (S. lycopersicum), and to a less degree to the wild species (S. pimpinellifolium). The negative effects of the CL could be alleviated by diurnal temperature variations, but the physiological mechanisms behind these are less clear. The results also show that the genetic potential for reducing the negative effects of CL does exist in the tomato germplasm

    Foliar abscisic acid content unterlies genotypic variation in stomatal responsiveness after growth at high relative air humidity

    Get PDF
    Background and Aims Stomata formed at high relative air humidity (RH) respond less to abscisic acid (ABA), an effect that varies widely between cultivars. This study tested the hypotheses that this genotypic variation in stomatal responsiveness originates from differential impairment in intermediates of the ABA signalling pathway during closure and differences in leaf ABA concentration during growth.Methods Stomatal anatomical features and stomatal responsiveness to desiccation, feeding with ABA, three transduction elements of its signalling pathway (H2O2, NO, Ca2+) and elicitors of these elements were determined in four rose cultivars grown at moderate (60 %) and high (90 %) RH. Leaf ABA concentration was assessed throughout the photoperiod and following mild desiccation (10 % leaf weight loss).Key Results Stomatal responsiveness to desiccation and ABA feeding was little affected by high RH in two cultivars, whereas it was considerably attenuated in two other cultivars (thus termed sensitive). Leaf ABA concentration was lower in plants grown at high RH, an effect that was more pronounced in the sensitive cultivars. Mild desiccation triggered an increase in leaf ABA concentration and equalized differences between leaves grown at moderate and high RH. High RH impaired stomatal responses to all transduction elements, but cultivar differences were not observed.ConclusionsHigh RH resulted in decreased leaf ABA concentration during growth as a result of lack of water deficit, since desiccation induced ABA accumulation. Sensitive cultivars underwent a larger decrease in leaf ABA concentration rather than having a higher ABA concentration threshold for inducing stomatal functioning. However, cultivar differences in stomatal closure following ABA feeding were not apparent in response to H2O2 and downstream elements, indicating that signalling events prior to H2O2 generation are involved in the observed genotypic variation

    Modelling and simulation of VSC-HVDC connection for offshore wind power plants

    Get PDF
    Several large offshore wind power plants (WPP) are planned in the seas around Europe. VSC-HVDC is a suitable means of integrating such large and distant offshore WPP which need long submarine cable transmission to the onshore grid. Recent trend is to use large wind turbine generators with full scale converters to achieve an optimal operation over a wide speed range. The offshore grid then becomes very much different from the conventional power system grid, in the sense that it is connected to power electronic converters only. A model of the wind power plant with VSC-HVDC connection is developed in PSCAD for time-domain dynamic simulation. This paper presents the modelling and simulation of such a system. A single line to ground fault has been simulated and fault currents for the grounded and ungrounded offshore grid system is obtained through simulation and then compared.Postprint (published version

    Load magnitude affects patellar tendon mechanical properties but not collagen or collagen cross-linking after long-term strength training in older adults

    Get PDF
    Abstract Background Regular loading of tendons may counteract the negative effects of aging. However, the influence of strength training loading magnitude on tendon mechanical properties and its relation to matrix collagen content and collagen cross-linking is sparsely described in older adults. The purpose of the present study was to compare the effects of moderate or high load resistance training on tendon matrix and its mechanical properties. Methods Seventeen women and 19 men, age 62–70 years, were recruited and randomly allocated to 12 months of heavy load resistance training (HRT), moderate load resistance training (MRT) or control (CON). Pre- and post-intervention testing comprised isometric quadriceps strength test (IsoMVC), ultrasound based testing of in vivo patellar tendon (PT) mechanical properties, MRI-based measurement of PT cross-sectional area (CSA), PT biopsies for assessment of fibril morphology, collagen content, enzymatic cross-links, and tendon fluorescence as a measure of advanced glycation end-products (AGEs). Results Thirty three participants completed the intervention and were included in the data analysis. IsoMVC increased more after HRT (+ 21%) than MRT (+ 8%) and CON (+ 7%) (p < 0.05). Tendon stiffness (p < 0.05) and Young’s modulus (p = 0.05) were also differently affected by training load with a reduction in CON and MRT but not in HRT. PT-CSA increased equally after both MRT and HRT. Collagen content, fibril morphology, enzymatic cross-links, and tendon fluorescence were unaffected by training. Conclusion Despite equal improvements in tendon size after moderate and heavy load resistance training, only heavy. load training seemed to maintain tendon mechanical properties in old age. The effect of load magnitude on tendon biomechanics was unrelated to changes of major load bearing matrix components in the tendon core. The study is a sub-study of the LISA study, which was registered at http://clinicaltrials.gov (NCT02123641) April 25th 2014
    • …
    corecore