391 research outputs found

    A new fuzzy set merging technique using inclusion-based fuzzy clustering

    Get PDF
    This paper proposes a new method of merging parameterized fuzzy sets based on clustering in the parameters space, taking into account the degree of inclusion of each fuzzy set in the cluster prototypes. The merger method is applied to fuzzy rule base simplification by automatically replacing the fuzzy sets corresponding to a given cluster with that pertaining to cluster prototype. The feasibility and the performance of the proposed method are studied using an application in mobile robot navigation. The results indicate that the proposed merging and rule base simplification approach leads to good navigation performance in the application considered and to fuzzy models that are interpretable by experts. In this paper, we concentrate mainly on fuzzy systems with Gaussian membership functions, but the general approach can also be applied to other parameterized fuzzy sets

    Mid-term report for the CORE Organic II funded project. “Innovative cropping Practices to increase soil health of organic fruit tree orchards” BIO-INCROP

    Get PDF
    Activities performed in the first part of BIO-INCROP project concern five of the eight main objectives fixed in the project proposal. They are: Evaluation of soil borne pest and pathogens involved in replant disease Role of rhizospheric bacterial and fungal communities in plant health Selection of naturally available resources to increase microbial diversity and biomass Compost and organic amendments Evaluation of biologically active formulates The document reports main research results and shows main items of dissemination activity performed in the first part of the project

    Tracebook : a dynamic checklist support system

    Get PDF
    It has recently been demonstrated that checklist scan enable significant improvements to patient safety. However, their clinical acceptance is significantly lower than expected. This is due to the lack of good support systems. Specifically, support systems are too static: this holds for paper-based support as well as for electronic systems that digitize paper-based support naively. Both approaches are independent from clinical process and clinical context. In this paper, we propose a process-oriented and context-aware dynamic checklist support system: Tracebook. This system supports the execution of complex clinical processes and rules involving data from Electronic Medical Record systems. Workflow activities and forms are specific to individual patients based on clinical rules and they are dispatched to the right user automatically based on a process model. Besides describing the Tracebook functionality in general, this paper demonstrates the support system specifically on an example application that we are preparing for a controlled clinical evaluation. At last we discuss the difference between Tracebook and other support systems which also rely on a checklist format

    DCCSS:a meta-model for dynamic clinical checklist support systems

    Get PDF
    Clinical safety checklists receive much research attention since they can reduce medical errors and improve patient safety. Computerized checklist support systems are also being developed actively. Such systems should individualize checklists based on information from the patient’s medical record while also considering the context of the clinical workflows. Unfortunately, the form definitions, database queries and workflow definitions related to dynamic checklists are too often hard-coded in the source code of the support systems. This increases the cognitive effort for the clinical stakeholders in the design process, it complicates the sharing of dynamic checklist definitions as well as the interoperability with other information systems. In this paper, we address these issues by contributing the DCCSS meta-model which enables the model-based development of dynamic checklist support systems. DCCSS was designed as an incremental extension of standard meta-models, which enables the reuse of generic model editors in a novel setting. In particular, DCCSS integrates the Business Process Model and Notation (BPMN) and the Guideline Interchange Format (GLIF), which represent best of breed languages for clinical workflow modeling and clinical rule modeling respectively. We also demonstrate one of the use cases where DCCSS has already been applied in a clinical setting

    Detection by tissue printing hybridization of Pome fruit viroids in the mediterranean basin

    Get PDF
    Available data on the incidence and biodiversity of pome fruit viroids in the Mediterranean basin are limited. Before starting a research survey to fill this gap, a tissue-printing hydridization (TPH) method to detect Apple scar skin viroid (ASSVd), Pear blister canker viroid (PBCVd) and Apple dimple fruit viroid (ADFVd) has been developed and validated. Afterward, TPH was used in large-scale indexing of pome fruit viroids in Bosnia and Herzegovina, Malta, Lebanon and Turkey. A total of about 1,000 trees was randomly collected and tested. Positive results obtained by TPH were confirmed by at least one additional detection method (RT-PCR and/or Northern-blot hybridization) and viroids were finally identified by sequencing full-length cDNA clones. PBCVd was detected in 13%, 12.4% and 5.4% of the tested pear trees in Bosnia and Herzegovina, Malta and Turkey, respectively, showing a wider diffusion of this viroid than expected. In contrast, ASSVd was never detected and ADFVd was only found in symptomatic trees (cv. Starking Delicious) in Lebanon, confirming a restricted presence of these viroids in the Mediterranean basin. Altogether, these data support the use of TPH as an easy and valuable tool for exploring pome fruit viroid spread. Keywords: Viroid disease, viroid spread, pome fruit trees, detection methods, molecular hybridizatio

    Measurement and physical interpretation of the mean motion of turbulent density patterns detected by the BES system on MAST

    Full text link
    The mean motion of turbulent patterns detected by a two-dimensional (2D) beam emission spectroscopy (BES) diagnostic on the Mega Amp Spherical Tokamak (MAST) is determined using a cross-correlation time delay (CCTD) method. Statistical reliability of the method is studied by means of synthetic data analysis. The experimental measurements on MAST indicate that the apparent mean poloidal motion of the turbulent density patterns in the lab frame arises because the longest correlation direction of the patterns (parallel to the local background magnetic fields) is not parallel to the direction of the fastest mean plasma flows (usually toroidal when strong neutral beam injection is present). The experimental measurements are consistent with the mean motion of plasma being toroidal. The sum of all other contributions (mean poloidal plasma flow, phase velocity of the density patterns in the plasma frame, non-linear effects, etc.) to the apparent mean poloidal velocity of the density patterns is found to be negligible. These results hold in all investigated L-mode, H-mode and internal transport barrier (ITB) discharges. The one exception is a high-poloidal-beta (the ratio of the plasma pressure to the poloidal magnetic field energy density) discharge, where a large magnetic island exists. In this case BES detects very little motion. This effect is currently theoretically unexplained.Comment: 28 pages, 15 figures, submitted to PPC

    Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities

    Get PDF
    We report a significant enhancement in both the energy and the flux of relativistic electrons accelerated by ultra-intense laser pulse irradiation (>1 10 21 W cm-2) of near solid density aligned CD2 nanowire arrays in comparison to those from solid CD2 foils irradiated with the same laser pulses. Ultrahigh contrast femtosecond laser pulses penetrate deep into the nanowire array creating a large interaction volume. Detailed three dimensional relativistic particle-in-cell simulations show that electrons originating anywhere along the nanowire length are first driven towards the laser to reach a lower density plasma region near the tip of the nanowires, where they are accelerated to the highest energies. Electrons that reach the lower density plasma experience direct laser acceleration up to the dephasing length, where they outrun the laser pulse. This yields an electron beam characterized by a 3 higher electron temperature and an integrated flux 22.4 larger respect to foil targets. Additionally, the generation of >1 MeV photons were observed to increase up to 4.5.Fil: Moreau, A.. State University of Colorado - Fort Collins; Estados UnidosFil: Hollinger, R.. State University of Colorado - Fort Collins; Estados UnidosFil: Calvi, C.. State University of Colorado - Fort Collins; Estados UnidosFil: Wang, S.. State University of Colorado - Fort Collins; Estados UnidosFil: Wang, Y.. State University of Colorado - Fort Collins; Estados UnidosFil: Capeluto, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Rockwood, A.. State University of Colorado - Fort Collins; Estados UnidosFil: Curtis, A.. State University of Colorado - Fort Collins; Estados UnidosFil: Kasdorf, S.. State University of Colorado - Fort Collins; Estados UnidosFil: Shlyaptsev, V.N.. State University of Colorado - Fort Collins; Estados UnidosFil: Kaymak, V.. Universitat Dusseldorf; AlemaniaFil: Pukhov, A.. Universitat Dusseldorf; AlemaniaFil: Rocca, J.J.. State University of Colorado - Fort Collins; Estados Unido

    Extreme ionization of heavy atoms in solid-density plasmas by relativistic second-harmonic laser pulses

    Get PDF
    Stripping heavy atoms in solid matter of most of their electrons requires the extreme conditions that exist in astrophysical plasmas, but are difficult to create in the laboratory1–3. Here we demonstrate solid-density gold plasmas with atoms stripped of up to 72 electrons (N-like Au72+) over large target depths. This record ionization is achieved by irradiating solid foils and near-solid-density nanowire arrays with highly relativistic (3 × 1021 W cm−2) second-harmonic femtosecond laser pulses of '10 J energy focused into a 1.6 µm spot. The short wavelength and high intensity enable the interaction to occur at a relativistic critical density4,5 of 1023 cm−3. Solid targets reach a higher average charge in 1- to 2-µm-thick layers, while the less dense nanowire plasmas are heated to much larger depths ('8 µm) by energetic electrons generated near the nanowire tips. Larger laser spots could result in solid Au plasmas ionized up to He-like.Fil: Hollinger, R.. State University of Colorado - Fort Collins; Estados UnidosFil: Wang, S.. State University of Colorado - Fort Collins; Estados UnidosFil: Wang, Y.. State University of Colorado - Fort Collins; Estados UnidosFil: Moreau, A.. State University of Colorado - Fort Collins; Estados UnidosFil: Capeluto, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Song, H.. State University of Colorado - Fort Collins; Estados UnidosFil: Rockwood, A.. State University of Colorado - Fort Collins; Estados UnidosFil: Bayarsaikhan, E.. State University of Colorado - Fort Collins; Estados UnidosFil: Kaymak, V.. Universitat Dusseldorf; AlemaniaFil: Pukhov, A.. Universitat Dusseldorf; AlemaniaFil: Shlyaptsev, V.N.. State University of Colorado - Fort Collins; Estados UnidosFil: Rocca, J.J.. State University of Colorado - Fort Collins; Estados Unido
    corecore