762 research outputs found
Magnetic and transport properties of the spin-state disordered oxide La0.8Sr0.2Co_{1-x}Rh_xO_{3-\delta}
We report measurements and analysis of magnetization, resistivity and
thermopower of polycrystalline samples of the perovskite-type Co/Rh oxide
LaSrCoRhO. This system constitutes a
solid solution for a full range of ,in which the crystal structure changes
from rhombohedral to orthorhombic symmetry with increasing Rh content . The
magnetization data reveal that the magnetic ground state immediately changes
upon Rh substitution from ferromagnetic to paramagnetic with increasing
near 0.25, which is close to the structural phase boundary. We find that one
substituted Rh ion diminishes the saturation moment by 9 , which implies
that one Rh ion makes a few magnetic Co ions nonmagnetic (the low
spin state), and causes disorder in the spin state and the highest occupied
orbital. In this disordered composition (), we find that
the thermopower is anomalously enhanced below 50 K. In particular, the
thermopower of =0.5 is larger by a factor of 10 than those of =0 and 1,
and the temperature coefficient reaches 4 V/K which is as large as
that of heavy-fermion materials such as CeRuSi.Comment: 8 pages, 6 figures, accepted to Phys. Rev.
Electronic phase diagram of the layered cobalt oxide system, LixCoO2 (0.0 <= x <= 1.0)
Here we report the magnetic properties of the layered cobalt oxide system,
LixCoO2, in the whole range of Li composition, 0 <= x <= 1. Based on
dc-magnetic susceptibility data, combined with results of 59Co-NMR/NQR
observations, the electronic phase diagram of LixCoO2 has been established. As
in the related material NaxCoO2, a magnetic critical point is found to exist
between x = 0.35 and 0.40, which separates a Pauli-paramagnetic and a
Curie-Weiss metals. In the Pauli-paramagnetic regime (x <= 0.35), the
antiferromagnetic spin correlations systematically increase with decreasing x.
Nevertheless, CoO2, the x = 0 end member is a non-correlated metal in the whole
temperature range studied. In the Curie-Weiss regime (x >= 0.40), on the other
hand, various phase transitions are observed. For x = 0.40, a susceptibility
hump is seen at 30 K, suggesting the onset of static AF order. A magnetic jump,
which is likely to be triggered by charge ordering, is clearly observed at Tt =
175 K in samples with x = 0.50 (= 1/2) and 0.67 (= 2/3), while only a tiny kink
appears at T = 210 K in the sample with an intermediate Li composition, x =
0.60. Thus, the phase diagram of the LixCoO2 system is complex, and the
electronic properties are sensitively influenced by the Li content (x).Comment: 29 pages, 1 table, 9 figure
Conditional particle filters with bridge backward sampling
Conditional particle filters (CPFs) with backward/ancestor sampling are
powerful methods for sampling from the posterior distribution of the latent
states of a dynamic model such as a hidden Markov model. However, the
performance of these methods deteriorates with models involving weakly
informative observations and/or slowly mixing dynamics. Both of these
complications arise when sampling finely time-discretised continuous-time path
integral models, but can occur with hidden Markov models too. Multinomial
resampling, which is commonly employed with CPFs, resamples excessively for
weakly informative observations and thereby introduces extra variance.
Furthermore, slowly mixing dynamics render the backward/ancestor sampling steps
ineffective, leading to degeneracy issues. We detail two conditional resampling
strategies suitable for the weakly informative regime: the so-called `killing'
resampling and the systematic resampling with mean partial order. To avoid the
degeneracy issues, we introduce a generalisation of the CPF with backward
sampling that involves auxiliary `bridging' CPF steps that are parameterised by
a blocking sequence. We present practical tuning strategies for choosing an
appropriate blocking. Our experiments demonstrate that the CPF with a suitable
resampling and the developed `bridge backward sampling' can lead to substantial
efficiency gains in the weakly informative and slow mixing regime
Measurement of electron correlations in LixCoO2 (x=0.0 - 0.35) using 59Co nuclear magnetic resonance and nuclear quadrupole resonance techniques
CoO2 is the parent compound for the superconductor NaxCoO2\cdot1.3H2O and was
widely believed to be a Mott insulator. We performed 59Co nuclear magnetic
resonance (NMR) and nuclear quadrupole resonance (NQR) studies on LixCoO2 (x =
0.35, 0.25, 0.12, and 0.0) to uncover the electronic state and spin
correlations in this series of compounds which was recently obtained through
electrochemical de-intercalation of Li from pristine LiCoO2. We find that
although the antiferromagnetic spin correlations systematically increase with
decreasing Li-content (x), the end member, CoO2 is a non-correlated metal that
well satisfies the Korringa relation for a Fermi liquid. Thus, CoO2 is not
simply located at the limit of x->0 for AxCoO2 (A = Li, Na) compounds. The
disappearance of the electron correlations in CoO2 is due to the three
dimensionality of the compound which is in contrast to the highly two
dimensional structure of AxCoO2.Comment: 4pages, 4figures, to be published in Phys.Rev.B. Rapid
Room-temperature ferromagnetism in Sr_(1-x)Y_xCoO_(3-delta) (0.2 < x < 0.25)
We have measured magnetic susceptibility and resistivity of
SrYCoO ( 0.1, 0.15, 0.2, 0.215, 0.225, 0.25, 0.3,
and 0.4), and have found that SrYCoO is a room
temperature ferromagnet with a Curie temperature of 335 K in a narrow
compositional range of 0.2 0.25. This is the highest transition
temperature among perovskite Co oxides. The saturation magnetization for
0.225 is 0.25 /Co at 10 K, which implies that the observed
ferromagnetism is a bulk effect. We attribute this ferromagnetism to a peculiar
Sr/Y ordering.Comment: 5 pages, 4 figure
Mixing height determination by ceilometer
International audienceA novel method for estimating the mixing height based on ceilometer measurements is described and tested against commonly used methods for determining mixing height. In this method an idealised backscatter profile is fitted to the observed backscatter profile. The mixing height is one of the idealised backscatter profile parameters. An extensive amount of ceilometer data and vertical soundings data from the Helsinki area in 2002 is utilized to test the applicability of the ceilometer for mixing height determination. The results, including 71 convective and 38 stable cases, show that in clear sky conditions the mixing heights determined from ceilometer based aerosol profiles and BL-height estimates based on sounding data are in a good agreement. Rejected outlier cases corresponded to very low aerosol concentrations in the mixed layer leading to a very weak aerosol backscatter signal in the lowest layer
- …