402 research outputs found

    Finite measure for the initial conditions of inflation

    Get PDF
    We investigate whether inflation requires finely tuned initial conditions in order to explain the degree of flatness and homogeneity observed in the Universe. We achieve this by using the Eisenhart lift, which can be used to write any scalar field theory in a purely geometric manner. Using this formalism, we construct a manifold whose points represent all possible initial conditions for an inflationary theory. After equipping this manifold with a natural metric, we show that the total volume of this manifold is finite for a wide class of inflationary potentials. Hence, we identify a natural measure that enables us to distinguish between generic and finely tuned sets of initial conditions without the need for a regulator, in contrast to previous work in the literature. Using this measure, we find that the initial conditions that allow for sufficient inflation are indeed finely tuned. The degree of fine-tuning also depends crucially on the value of the cosmological constant at the time of inflation. Examining some concrete examples, we find that we require percent-level fine tuning if we allow the cosmological constant during inflation to be much larger than it is today. However, if we fix the cosmological constant to its presently observed value, the degree of fine tuning required is of order 105410^{-54}

    Magnetic resonance imaging phantoms for quality-control of myocardial T1 and ECV mapping: specific formulation, long-term stability and variation with heart rate and temperature

    Get PDF
    Background: Magnetic resonance imaging (MRI) phantoms are routinely used for quality assurance in MRI centres; however their long term stability for verification of myocardial T1/ extracellular volume fraction (ECV) mapping has never been investigated. Methods: Nickel-chloride agarose gel phantoms were formulated in a reproducible laboratory procedure to mimic blood and myocardial T1 and T2 values, native and late after Gadolinium administration as used in T1/ECV mapping. The phantoms were imaged weekly with an 11 heart beat MOLLI sequence for T1 and long TR spin-echo sequences for T2, in a carefully controlled reproducible manner for 12 months. Results: There were only small relative changes seen in all the native and post gadolinium T1 values (up to 9.0 % maximal relative change in T1 values) or phantom ECV (up to 8.3 % maximal relative change of ECV, up to 2.2 % maximal absolute change in ECV) during this period. All native and post gadolinium T2 values remained stable over time with <2 % change. Temperature sensitivity testing showed MOLLI T1 values in the long T1 phantoms increasing by 23.9 ms per degree increase and short T1 phantoms increasing by 0.3 ms per degree increase. There was a small absolute increase in ECV of 0.069 % (~0.22 % relative increase in ECV) per degree increase. Variation in heart rate testing showed a 0.13 % absolute increase in ECV (~0.45 % relative increase in ECV) per 10 heart rate increase. Conclusions: These are the first phantoms reported in the literature modeling T1 and T2 values for blood and myocardium specifically for the T1mapping/ECV mapping application, with stability tested rigorously over a 12 month period. This work has significant implications for the utility of such phantoms in improving the accuracy of serial scans for myocardial tissue characterisation by T1 mapping methods and in multicentre work

    SPATIAL DISTRIBUTION REQUIREMENTS OF REFERENCE GROUND CONTROL FOR ESTIMATING LIDAR/INS BORESIGHT MISALIGNMENT

    Get PDF
    LiDAR (Light Detection and Ranging, also known as Airborne Laser Scanning &ndash; ALS) is a powerful technology for obtaining detailed and accurate terrain models as well as precise description of natural and man-made objects from airborne platforms, with excellent vertical accuracy. High performance integrated GPS/INS systems provide the necessary navigation information for the LiDAR data acquisition platform, and therefore, the proper calibration of the entire Mobile Mapping System (MMS) including individual and inter-sensor calibration, is essential to determine the accurate spatial&nbsp; relationship of the involved sensors. In particular, the spatial relationship between the INS body frame and the LiDAR body frame is of high importance as it could be the largest source of systematic errors in airborne MMS. The feasibility of using urban areas, especially buildings, for boresight misalignment is still investigated. In this research, regularly or randomly distributed, photogrammetrically restituted buildings are used as reference surfaces, to investigate the impact of&nbsp; the spatial distribution and the distance between the necessary &lsquo;building-positions&rsquo; on boresight&rsquo;s misalignment parameter estimation. The data used for performance evaluation included LiDAR point clouds Pothou, A. et al&nbsp; 777 and aerial images captured in a test area in London, Ohio, USA. The city includes mainly residential houses and a few bigger buildings

    T1 at 1.5T and 3T compared with conventional T2* at 1.5T for cardiac siderosis

    Get PDF
    Background: Myocardial black blood (BB) T2* relaxometry at 1.5T provides robust, reproducible and calibrated non-invasive assessment of cardiac iron burden. In vitro data has shown that like T2*, novel native Modified Look-Locker Inversion recovery (MOLLI) T1 shortens with increasing tissue iron. The relative merits of T1 and T2* are largely unexplored. We compared the established 1.5T BB T2* technique against native T1 values at 1.5T and 3T in iron overload patients and in normal volunteers. Methods: A total of 73 subjects (42 male) were recruited, comprising 20 healthy volunteers (controls) and 53 patients (thalassemia major 22, sickle cell disease 9, hereditary hemochromatosis 9, other iron overload conditions 13). Single mid-ventricular short axis slices were acquired for BB T2* at 1.5T and MOLLI T1 quantification at 1.5T and 3T. Results: In healthy volunteers, median T1 was 1014 ms (full range 939–1059 ms) at 1.5T and modestly increased to 1165ms (full range 1056–1224 ms) at 3T. All patients with significant cardiac iron overload (1.5T T2* values <20 ms) had T1 values <939 ms at 1.5T, and <1056 ms at 3T. Associations between T2* and T1 were found to be moderate with y =377 · x0.282 at 1.5T (R2 = 0.717), and y =406 · x0.294 at 3T (R2 = 0.715). Measures of reproducibility of T1 appeared superior to T2*. Conclusions: T1 mapping at 1.5T and at 3T can identify individuals with significant iron loading as defined by the current gold standard T2* at 1.5T. However, there is significant scatter between results which may reflect measurement error, but it is also possible that T1 interacts with T2*, or is differentially sensitive to aspects of iron chemistry or other biology. Hurdles to clinical implementation of T1 include the lack of calibration against human myocardial iron concentration, no demonstrated relation to cardiac outcomes, and variation in absolute T1 values between scanners, which makes inter-centre comparisons difficult. The relative merits of T1 at 3T versus T2* at 3T require further consideration

    Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions

    Get PDF
    Mapping of the longitudinal relaxation time (T1) and extracellular volume (ECV) offers a means of identifying pathological changes in myocardial tissue, including diffuse changes that may be invisible to existing T1-weighted methods. This technique has recently shown strong clinical utility for pathologies such as Anderson- Fabry disease and amyloidosis and has generated clinical interest as a possible means of detecting small changes in diffuse fibrosis; however, scatter in T1 and ECV estimates offers challenges for detecting these changes, and bias limits comparisons between sites and vendors. There are several technical and physiological pitfalls that influence the accuracy (bias) and precision (repeatability) of T1 and ECV mapping methods. The goal of this review is to describe the most significant of these, and detail current solutions, in order to aid scientists and clinicians to maximise the utility of T1 mapping in their clinical or research setting. A detailed summary of technical and physiological factors, issues relating to contrast agents, and specific disease-related issues is provided, along with some considerations on the future directions of the field. Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions. Available from: https://www.researchgate.net/publication/317548806_Towards_accurate_and_precise_T1_and_extracellular_volume_mapping_in_the_myocardium_a_guide_to_current_pitfalls_and_their_solutions [accessed Jun 13, 2017]

    T1 mapping in cardiac MRI

    Get PDF
    Quantitative myocardial and blood T1 have recently achieved clinical utility in numerous pathologies, as they provide non-invasive tissue characterization with the potential to replace invasive biopsy. Native T1 time (no contrast agent), changes with myocardial extracellular water (edema, focal or diffuse fibrosis), fat, iron, and amyloid protein content. After contrast, the extracellular volume fraction (ECV) estimates the size of the extracellular space and identifies interstitial disease. Spatially resolved quantification of these biomarkers (so-called T1 mapping and ECV mapping) are steadily becoming diagnostic and prognostically useful tests for several heart muscle diseases, influencing clinical decision-making with a pending second consensus statement due mid-2017. This review outlines the physics involved in estimating T1 times and summarizes the disease-specific clinical and research impacts of T1 and ECV to date. We conclude by highlighting some of the remaining challenges such as their community-wide delivery, quality control, and standardization for clinical practice

    Hypertrophic pulmonary osteoarthropathy secondary to bronchial adenocarcinoma and coexisting pulmonary tuberculosis: a case report

    Get PDF
    A 44-year-old man presented with painful swelling of wrists and ankles, severe pain at both tibiae, clubbing of fingers and toes and arthritis in wrist and ankle joints. The chest roentgenogram showed consolidation of the right lower lobe, whereas plain roentgenograms revealed solid periosteal reaction at both tibiae. CT and bronchoscopy confirmed the presence of adenocarcinoma of the right lower lobe. Moreover, mycobacterium of tuberculosis was isolated by culture of the patient's sputum

    Update of the European Association of Cardiovascular Imaging (EACVI) Core Syllabus for the European Cardiovascular Magnetic Resonance Certification Exam

    Get PDF
    An updated version of the European Association of Cardiovascular Imaging (EACVI) Core Syllabus for the European Cardiovascular Magnetic Resonance (CMR) Certification Exam is now available online. The syllabus lists key elements of knowledge in CMR. It represents a framework for the development of training curricula and provides expected knowledge-based learning outcomes to the CMR trainees, in particular those intending to demonstrate CMR knowledge in the European CMR exam, a core requirement in the CMR certification process. </p
    corecore