5,355 research outputs found
Associative memory scheme for genetic algorithms in dynamic environments
Copyright @ Springer-Verlag Berlin Heidelberg 2006.In recent years dynamic optimization problems have attracted a growing interest from the community of genetic algorithms with several approaches developed to address these problems, of which the memory scheme is a major one. In this paper an associative memory scheme is proposed for genetic algorithms to enhance their performance in dynamic environments. In this memory scheme, the environmental information is also stored and associated with current best individual of the population in the memory. When the environment changes the stored environmental information that is associated with the best re-evaluated memory solution is extracted to create new individuals into the population. Based on a series of systematically constructed dynamic test environments, experiments are carried out to validate the proposed associative memory scheme. The environmental results show the efficiency of the associative memory scheme for genetic algorithms in dynamic environments
Sampling-based Algorithms for Optimal Motion Planning
During the last decade, sampling-based path planning algorithms, such as
Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have
been shown to work well in practice and possess theoretical guarantees such as
probabilistic completeness. However, little effort has been devoted to the
formal analysis of the quality of the solution returned by such algorithms,
e.g., as a function of the number of samples. The purpose of this paper is to
fill this gap, by rigorously analyzing the asymptotic behavior of the cost of
the solution returned by stochastic sampling-based algorithms as the number of
samples increases. A number of negative results are provided, characterizing
existing algorithms, e.g., showing that, under mild technical conditions, the
cost of the solution returned by broadly used sampling-based algorithms
converges almost surely to a non-optimal value. The main contribution of the
paper is the introduction of new algorithms, namely, PRM* and RRT*, which are
provably asymptotically optimal, i.e., such that the cost of the returned
solution converges almost surely to the optimum. Moreover, it is shown that the
computational complexity of the new algorithms is within a constant factor of
that of their probabilistically complete (but not asymptotically optimal)
counterparts. The analysis in this paper hinges on novel connections between
stochastic sampling-based path planning algorithms and the theory of random
geometric graphs.Comment: 76 pages, 26 figures, to appear in International Journal of Robotics
Researc
From Uncertainty Data to Robust Policies for Temporal Logic Planning
We consider the problem of synthesizing robust disturbance feedback policies
for systems performing complex tasks. We formulate the tasks as linear temporal
logic specifications and encode them into an optimization framework via
mixed-integer constraints. Both the system dynamics and the specifications are
known but affected by uncertainty. The distribution of the uncertainty is
unknown, however realizations can be obtained. We introduce a data-driven
approach where the constraints are fulfilled for a set of realizations and
provide probabilistic generalization guarantees as a function of the number of
considered realizations. We use separate chance constraints for the
satisfaction of the specification and operational constraints. This allows us
to quantify their violation probabilities independently. We compute disturbance
feedback policies as solutions of mixed-integer linear or quadratic
optimization problems. By using feedback we can exploit information of past
realizations and provide feasibility for a wider range of situations compared
to static input sequences. We demonstrate the proposed method on two robust
motion-planning case studies for autonomous driving
Anisotropic photoconductivity in graphene
We investigate the photoconductivity of graphene within the relaxation time
approximation. In presence of the inter-band transitions induced by the
linearly polarized light the photoconductivity turns out to be highly
anisotropic due to the pseudospin selection rule for Dirac-like carriers. The
effect can be observed in clean undoped graphene samples and be utilized for
light polarization detection.Comment: 4 pages, 2 figure
Finding a needle in an exponential haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning
We present a sampling-based framework for multi-robot motion planning which
combines an implicit representation of a roadmap with a novel approach for
pathfinding in geometrically embedded graphs tailored for our setting. Our
pathfinding algorithm, discrete-RRT (dRRT), is an adaptation of the celebrated
RRT algorithm for the discrete case of a graph, and it enables a rapid
exploration of the high-dimensional configuration space by carefully walking
through an implicit representation of a tensor product of roadmaps for the
individual robots. We demonstrate our approach experimentally on scenarios of
up to 60 degrees of freedom where our algorithm is faster by a factor of at
least ten when compared to existing algorithms that we are aware of.Comment: Kiril Solovey and Oren Salzman contributed equally to this pape
Calorimetric and magnetic study for NiMnIn and relative cooling power in paramagnetic inverse magnetocaloric systems
The non-stoichiometric Heusler alloy NiMnIn undergoes a
martensitic phase transformation in the vicinity of 345 K, with the high
temperature austenite phase exhibiting paramagnetic rather than ferromagnetic
behavior, as shown in similar alloys with lower-temperature transformations.
Suitably prepared samples are shown to exhibit a sharp transformation, a
relatively small thermal hysteresis, and a large field-induced entropy change.
We analyzed the magnetocaloric behavior both through magnetization and direct
field-dependent calorimetry measurements. For measurements passing through the
first-order transformation, an improved method for heat-pulse relaxation
calorimetry was designed. The results provide a firm basis for the analytic
evaluation of field-induced entropy changes in related materials. An analysis
of the relative cooling power (RCP), based on the integrated field-induced
entropy change and magnetizing behavior of the Mn spin system with
ferromagnetic correlations, shows that a significant RCP may be obtained in
these materials by tuning the magnetic and structural transformation
temperatures through minor compositional changes or local order changes
Cross-entropy Temporal Logic Motion Planning
This paper presents a method for optimal trajectory generation for discrete-time nonlinear systems with linear temporal logic (LTL) task specifications. Our approach is based on recent advances in stochastic optimization algorithms for optimal trajectory generation. These methods rely on estimation of the rare event of sampling optimal trajectories, which is achieved by incrementally improving a sampling distribution so as to minimize the cross-entropy. A key component of these stochastic optimization algorithms is determining whether or not a trajectory is collision-free. We generalize this collision checking to efficiently verify whether or not a trajectory satisfies a LTL formula. Interestingly, this verification can be done in time polynomial in the length of the LTL formula and the trajectory. We also propose a method for efficiently re-using parts of trajectories that only partially satisfy the specification, instead of simply discarding the entire sample. Our approach is demonstrated through numerical experiments involving Dubins car and a generic point-mass model subject to complex temporal logic task specifications
Schizophyllum commune: The main cause of dying trees of the Banja Luka arbored walks and parks
In the frame of investigation of the main cause of dying trees of the main arbored walks (Mladena Stojanovića Aley and Park), the investigation of the presence and diversity of macrofungi in Banja Luka City were undertaken in the period 2006-2011. Relatively poor generic diversity of lignicolous (pathogenic or potentially pathogenic and saprotrophic) macrofungi with only 16 species representing this group (13 basidiomycets: Schizophyllum commune, Fomes fomentarius, Stereum hirsutum, Coriolus versicolor, Flammulina velutipes, Pseudotrametes gibbosa, Ganoderma applanatum, G. lucidum, G. adspersum, Polyporus squamosus, Meripilus giganteus, Laetiporus sulphureus, Auricularia auricula-judae, and 3 ascomycets: Nectria cinnabarina, Xylaria hypoxylon, X. polymorpha) were recorded. Such a poor qualitative composition of this very important fungal group could be explained by the reduction in the number of plant species in arbored walks and alleys, as well as the reduction in the number of fungi resistant to heavy air pollution caused by nearby (1-5m) fuel combustion in engines. Although only preliminary, our results pointed to the necessity of conservation and protection of the most beautiful features of Banja Luka and its alleys and arbored walks, by undertaking the measures of curing damaged trees and treating them with fungicides in order to wipe out the epiphytia caused in more than 95% of cases (dated May 2011) by Split-gill (Schizophyllum commune), present on dead wood but also on damaged trees of Aesculus hyppocastaneum (127 trees), Tilia cordata (124 trees), Tilia platyphyllos (36 trees), Tilia argentea (40 trees), Acer negundo (20 trees), Platanus acerifolia (2 trees), Robinia pseudoacacia (3 trees), Fraxinus ornus (1 tree), Betula pendula (1 tree), Catalpa sp. (2 trees), etc. Altogether, during the last decade, around 200 trees collapsed or were sanitary cut in Banja Luka arbored walk from the Malta site to the Green bridge, a total length around 5 km. The reason for this was primarily due to Split-gill fungus and the restoration of arbored walks in the streets extremely polluted by engine fuel consumption in the zone of Mladena Stojanovića street. By analyzing the trees along the City of Banja Luka main street it could be concluded that, besides the appearance of suffocation of plants, due to wide asphalt surfaces that are located immediately next to the tree-trunks and heavy air pollution, fungi caused illnesses are the most important cause of the decline of trees. With its great adaptation to arid climate and ability to resist to the air pollution, Schizophyllum commune turned out to be the most aggressive and successful universal fungal invader of trees from old alleys, even threatening immunocompromised human individuals. However, man and his direct or indirect impacts contribute to the dying of trees much faster than the fungal pathogens in the busiest and most polluted Mladena Stojanovića street
Application of Correct-by-Construction Principles for a Resilient Risk-Aware Architecture
In this paper we discuss the application of correct-by-construction techniques to a resilient,
risk-aware software architecture for onboard, real-time autonomous operations. We
mean to combat complexity and the accidental introduction of bugs through the use of
verifiable auto-coding software and correct-by-construction techniques, and discuss the use
of a toolbox for correct-by-construction Temporal Logic Planning (TuLiP) for such a purpose.
We describe some of TuLiP’s current functionality, specifically its ability to model
symbolic discrete systems and synthesize software controllers and control policies that are
correct-by-construction. We then move on to discuss the use of these techniques to define a
deliberative goal-directed executive capability that performs risk-informed action-planning
– to satisfy the mission goals (specified by mission control) within the specified priorities
and constraints. Finally, we discuss an application of the TuLiP process to a simple rover
resilience scenario
A new analytical approach for the velocity field in rolling processes and its application in through-thickness texture prediction
A new analytical model is presented that expresses kinematically admissible velocity fields in rolling processes. Opposed to conventional streamline approaches, the current model does not force the material to flow along the prescribed lines, but introduces a new coordinate that is constant over these lines, to prescribe a fixed component of the velocity in the rolling direction as a function of that coordinate and the coordinate along the rolling direction. The interaction between the rolls and the surface is incorporated in the model via two scalar parameters which
depend on the friction conditions between the roll and the sheet, and the properties of rolled material. The scalar parameters can be tuned with experimental observations of deformation flow across the thickness. The modelled material flow does not reveal significant deviation from the one calculated by streamlines. The obtained analytical expressions for the velocity gradient tensor components combined with polycrystal plasticity models enables the prediction of the through-thickness texture evolution for various friction conditions.status: publishe
- …