5,355 research outputs found

    Associative memory scheme for genetic algorithms in dynamic environments

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2006.In recent years dynamic optimization problems have attracted a growing interest from the community of genetic algorithms with several approaches developed to address these problems, of which the memory scheme is a major one. In this paper an associative memory scheme is proposed for genetic algorithms to enhance their performance in dynamic environments. In this memory scheme, the environmental information is also stored and associated with current best individual of the population in the memory. When the environment changes the stored environmental information that is associated with the best re-evaluated memory solution is extracted to create new individuals into the population. Based on a series of systematically constructed dynamic test environments, experiments are carried out to validate the proposed associative memory scheme. The environmental results show the efficiency of the associative memory scheme for genetic algorithms in dynamic environments

    Sampling-based Algorithms for Optimal Motion Planning

    Get PDF
    During the last decade, sampling-based path planning algorithms, such as Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g., as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g., showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e., such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.Comment: 76 pages, 26 figures, to appear in International Journal of Robotics Researc

    From Uncertainty Data to Robust Policies for Temporal Logic Planning

    Full text link
    We consider the problem of synthesizing robust disturbance feedback policies for systems performing complex tasks. We formulate the tasks as linear temporal logic specifications and encode them into an optimization framework via mixed-integer constraints. Both the system dynamics and the specifications are known but affected by uncertainty. The distribution of the uncertainty is unknown, however realizations can be obtained. We introduce a data-driven approach where the constraints are fulfilled for a set of realizations and provide probabilistic generalization guarantees as a function of the number of considered realizations. We use separate chance constraints for the satisfaction of the specification and operational constraints. This allows us to quantify their violation probabilities independently. We compute disturbance feedback policies as solutions of mixed-integer linear or quadratic optimization problems. By using feedback we can exploit information of past realizations and provide feasibility for a wider range of situations compared to static input sequences. We demonstrate the proposed method on two robust motion-planning case studies for autonomous driving

    Anisotropic photoconductivity in graphene

    Get PDF
    We investigate the photoconductivity of graphene within the relaxation time approximation. In presence of the inter-band transitions induced by the linearly polarized light the photoconductivity turns out to be highly anisotropic due to the pseudospin selection rule for Dirac-like carriers. The effect can be observed in clean undoped graphene samples and be utilized for light polarization detection.Comment: 4 pages, 2 figure

    Finding a needle in an exponential haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning

    Full text link
    We present a sampling-based framework for multi-robot motion planning which combines an implicit representation of a roadmap with a novel approach for pathfinding in geometrically embedded graphs tailored for our setting. Our pathfinding algorithm, discrete-RRT (dRRT), is an adaptation of the celebrated RRT algorithm for the discrete case of a graph, and it enables a rapid exploration of the high-dimensional configuration space by carefully walking through an implicit representation of a tensor product of roadmaps for the individual robots. We demonstrate our approach experimentally on scenarios of up to 60 degrees of freedom where our algorithm is faster by a factor of at least ten when compared to existing algorithms that we are aware of.Comment: Kiril Solovey and Oren Salzman contributed equally to this pape

    Calorimetric and magnetic study for Ni50_{50}Mn36_{36}In14_{14} and relative cooling power in paramagnetic inverse magnetocaloric systems

    Get PDF
    The non-stoichiometric Heusler alloy Ni50_{50}Mn36_{36}In14_{14} undergoes a martensitic phase transformation in the vicinity of 345 K, with the high temperature austenite phase exhibiting paramagnetic rather than ferromagnetic behavior, as shown in similar alloys with lower-temperature transformations. Suitably prepared samples are shown to exhibit a sharp transformation, a relatively small thermal hysteresis, and a large field-induced entropy change. We analyzed the magnetocaloric behavior both through magnetization and direct field-dependent calorimetry measurements. For measurements passing through the first-order transformation, an improved method for heat-pulse relaxation calorimetry was designed. The results provide a firm basis for the analytic evaluation of field-induced entropy changes in related materials. An analysis of the relative cooling power (RCP), based on the integrated field-induced entropy change and magnetizing behavior of the Mn spin system with ferromagnetic correlations, shows that a significant RCP may be obtained in these materials by tuning the magnetic and structural transformation temperatures through minor compositional changes or local order changes

    Cross-entropy Temporal Logic Motion Planning

    Get PDF
    This paper presents a method for optimal trajectory generation for discrete-time nonlinear systems with linear temporal logic (LTL) task specifications. Our approach is based on recent advances in stochastic optimization algorithms for optimal trajectory generation. These methods rely on estimation of the rare event of sampling optimal trajectories, which is achieved by incrementally improving a sampling distribution so as to minimize the cross-entropy. A key component of these stochastic optimization algorithms is determining whether or not a trajectory is collision-free. We generalize this collision checking to efficiently verify whether or not a trajectory satisfies a LTL formula. Interestingly, this verification can be done in time polynomial in the length of the LTL formula and the trajectory. We also propose a method for efficiently re-using parts of trajectories that only partially satisfy the specification, instead of simply discarding the entire sample. Our approach is demonstrated through numerical experiments involving Dubins car and a generic point-mass model subject to complex temporal logic task specifications

    Schizophyllum commune: The main cause of dying trees of the Banja Luka arbored walks and parks

    Get PDF
    In the frame of investigation of the main cause of dying trees of the main arbored walks (Mladena Stojanovića Aley and Park), the investigation of the presence and diversity of macrofungi in Banja Luka City were undertaken in the period 2006-2011. Relatively poor generic diversity of lignicolous (pathogenic or potentially pathogenic and saprotrophic) macrofungi with only 16 species representing this group (13 basidiomycets: Schizophyllum commune, Fomes fomentarius, Stereum hirsutum, Coriolus versicolor, Flammulina velutipes, Pseudotrametes gibbosa, Ganoderma applanatum, G. lucidum, G. adspersum, Polyporus squamosus, Meripilus giganteus, Laetiporus sulphureus, Auricu­laria auricula-judae, and 3 ascomycets: Nectria cinnabarina, Xylaria hypoxylon, X. poly­morpha) were recorded. Such a poor qualitative composition of this very important fungal group could be explained by the reduction in the number of plant species in arbored walks and alleys, as well as the reduction in the number of fungi resistant to heavy air pollution caused by nearby (1-5m) fuel combustion in engines. Although only preliminary, our results pointed to the necessity of conservation and protection of the most beautiful features of Banja Luka and its alleys and arbored walks, by undertaking the measures of curing damaged trees and treating them with fungicides in order to wipe out the epiphytia caused in more than 95% of cases (dated May 2011) by Split-gill (Schizophyllum commune), present on dead wood but also on damaged trees of Aesculus hyppocastaneum (127 trees), Tilia cordata (124 trees), Tilia platyphyllos (36 trees), Tilia argentea (40 trees), Acer negundo (20 trees), Platanus acerifolia (2 trees), Robinia pseudoacacia (3 trees), Fraxinus ornus (1 tree), Betula pendula (1 tree), Catalpa sp. (2 trees), etc. Altogether, during the last decade, around 200 trees collapsed or were sanitary cut in Banja Luka arbored walk from the Malta site to the Green bridge, a total length around 5 km. The reason for this was primarily due to Split-gill fungus and the restoration of arbored walks in the streets extremely polluted by engine fuel consumption in the zone of Mladena Stojanovića street. By analyzing the trees along the City of Banja Luka main street it could be concluded that, besides the appearance of suffocation of plants, due to wide asphalt surfaces that are located immediately next to the tree-trunks and heavy air pollution, fungi caused illnesses are the most important cause of the decline of trees. With its great adaptation to arid climate and ability to resist to the air pollution, Schizophyllum commune turned out to be the most aggressive and successful universal fungal invader of trees from old alleys, even threatening immuno­compromised human individuals. However, man and his direct or indirect impacts contrib­ute to the dying of trees much faster than the fungal pathogens in the busiest and most polluted Mladena Stojanovića street

    Application of Correct-by-Construction Principles for a Resilient Risk-Aware Architecture

    Get PDF
    In this paper we discuss the application of correct-by-construction techniques to a resilient, risk-aware software architecture for onboard, real-time autonomous operations. We mean to combat complexity and the accidental introduction of bugs through the use of verifiable auto-coding software and correct-by-construction techniques, and discuss the use of a toolbox for correct-by-construction Temporal Logic Planning (TuLiP) for such a purpose. We describe some of TuLiP’s current functionality, specifically its ability to model symbolic discrete systems and synthesize software controllers and control policies that are correct-by-construction. We then move on to discuss the use of these techniques to define a deliberative goal-directed executive capability that performs risk-informed action-planning – to satisfy the mission goals (specified by mission control) within the specified priorities and constraints. Finally, we discuss an application of the TuLiP process to a simple rover resilience scenario

    A new analytical approach for the velocity field in rolling processes and its application in through-thickness texture prediction

    Get PDF
    A new analytical model is presented that expresses kinematically admissible velocity fields in rolling processes. Opposed to conventional streamline approaches, the current model does not force the material to flow along the prescribed lines, but introduces a new coordinate that is constant over these lines, to prescribe a fixed component of the velocity in the rolling direction as a function of that coordinate and the coordinate along the rolling direction. The interaction between the rolls and the surface is incorporated in the model via two scalar parameters which depend on the friction conditions between the roll and the sheet, and the properties of rolled material. The scalar parameters can be tuned with experimental observations of deformation flow across the thickness. The modelled material flow does not reveal significant deviation from the one calculated by streamlines. The obtained analytical expressions for the velocity gradient tensor components combined with polycrystal plasticity models enables the prediction of the through-thickness texture evolution for various friction conditions.status: publishe
    corecore