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A new analytical model is presented that expresses kinematically admissible velocity fields in
rolling processes. Opposed to conventional streamline approaches, the current model does not
force the material to flow along the prescribed lines, but introduces a new coordinate that is
constant over these lines, to prescribe a fixed component of the velocity in the rolling direction
as a function of that coordinate and the coordinate along the rolling direction. The interaction
between the rolls and the surface is incorporated in the model via two scalar parameters which
depend on the friction conditions between the roll and the sheet, and the properties of rolled
material. The scalar parameters can be tuned with experimental observations of deformation
flow across the thickness. The modelled material flow does not reveal significant deviation from
the one calculated by streamlines. The obtained analytical expressions for the velocity gradient
tensor components combined with polycrystal plasticity models enables the prediction of the
through-thickness texture evolution for various friction conditions.
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I. INTRODUCTION

ON single crystal level, plastic deformation occurs on
slip systems, which consist of a slip plane and a slip
direction.[1] When a large plastic deformation occurs in a
polycrystalline aggregate, each particular crystal rotates
in order to maintain compatibility with its surrounding
and as a result a specific crystallographic orientation
distribution arises called texture.[1] As the single crystal’s
plastic behavior is highly anisotropic, a textured mate-
rial has in general an anisotropic plastic behavior.
Knowledge of the texture and anisotropy is important
since it influences the macroscopic deformation behav-
ior such as formability. A more sophisticated material
law could be used as an input in various numerical and
analytical approaches such as the finite element (FE)
based simulations,[2] the slab method,[3] the slip-line
method[4] and the upper bound method,[5–7] to calculate
various technological outputs of the rolling process.

In order to predict the plastic behavior of a polycrys-
talline material, several models have been developed.
These models could be subdivided into two types,
namely the computationally costly crystal plasticity
finite element models (CPFEM)[8,9] and statistical mes-

oscopic polycrystal plasticity models. In polycrystal
plasticity models, the macroscopic velocity gradient
tensor is imposed whereas the stresses and strains in the
grains, as well as the macroscopic stress, are obtained
based on specific assumptions. Particular examples are
the Taylor[10] model, the visco-plastic self consistent
model,[11] the Alamel model,[12] and the GIA model.[13]

An overview of these models is given by Qie et al.[14]

Numerous literature sources report on the calculation
of the velocity gradient tensor coupled with polycrystal
plasticity models.[15–18] Choi et al.[15] used the FE
method to calculate the local strain evolution. Van
Houtte et al. used an incremental texture updating
procedure in a FE model of a cup drawing process.[16]

Segurado et al.[17] reported on a multiscale model to
embed the VPSC model in an implicit FE model of sheet
rolling. Engler et al.[18] imposed a sine-shaped 31 and 13
shear (where 1 represents the rolling direction, and 3 the
sheet’s normal direction) in the top layers to implement
the shear between the rolls and the plate’s surface.
Alternatively, the deformation flow across the thickness
in rolled materials is described by analytical flow
functions. Both two and three dimensional functions
were proposed to construct the kinematically admissible
strain velocity fields.[19–26] The single and dual-stream
functions are constructed in a way that the velocity
vector at a point in the deformation zone is the
tangential vector to the flowline passing through this
point. It is assumed that the material flows along
prescribed trajectories called flowlines or streamlines. In
the streamline approaches, the components of velocity
gradient tensor are expressed as partial derivates of the
velocity field along a particular direction. A kinemati-
cally admissible velocity ensures the flow of a material
along the flowlines and also fulfills the material’s
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incompressibility condition. The flowlines are repre-
sented by a parametric family of curves, and could be
expressed as parabolic,[25] circular, elliptical,[19] or a
complex shape function.[23,26] Since the described meth-
ods deal with analytical functions, they are able to find
analytical expressions for the components of the velocity
gradient tensor. The non uniform velocity gradient field
across the thickness of a rolled sheet explains the
through-thickness texture gradient, as reported in
numerous literature sources.[15,18,27] The flow line mod-
els are capable of reproducing the shear component in
the rolling plane by assigning heterogeneous velocity
distribution at the end of the flowline. However, current
state of the art does not contain a streamline formula-
tion with a continuous velocity field homogeneous
outside of the deformation zone, and which can alter
when different frictional conditions applied between the
rolls and the plate’s surface. Different frictional condi-
tions lead to various deformation flow across the
thickness, which can be visualized by considering the
deformation after rolling of an initially rectangular grid
put on the plate, the so called grid pattern tech-
nique.[28,29]

The goal of the present work is to predict the
through-thickness deformation in rolled materials
and to calculate the corresponding texture develop-
ment. The strain fields at different through thickness
planes are calculated by the presented analytical
approach, and are used as an input for a crystal
plasticity model that calculates textures. The analytical
approach for the velocity field, although not fulfilling
stress equilibrium, offers the advantage over the FE
method that the calculation procedure is drastically
faster.

II. SPECIMEN AND PROCESS

In this work, the cold rolling process of a plate made
of DC04 single phase ferritic steel is studied. The process
and rolling parameters are schematically shown in
Figure 1. The parameters are the initial sheet thickness
2e (mm), the final sheet thickness 2s (mm), the roll’s
radius R (mm), and the roll’s angular velocity x (rad/s).

In this paper, a typical cold rolling process with a
significant thickness reduction has been studied. A
sheet’s thickness reduction from 2e = 1 to
2s = 0.6 mm is considered. The rolling mills with a
radius of 12 cm rotate with an angular velocity of 10
rotations per minute. Different frictional conditions
between the rolling mills and the plate have been
considered. The rolling process is assumed to be in the
steady state condition. Due to the symmetry of the
problem in the horizontal plane z = 0, it is sufficient to
consider only one half of the sheet.

The texture evolution across the thickness of rolled
DC04 steel was predicted with the viscoplastic self-
consistent (VPSC) model[11] with an affine linearization
scheme. Since the investigated material has a body
centered cubic crystal structure, 48 possible slip systems
of three families were taken into account: {112}h111i,
{110}h111i, and {123}h111i.

III. MATHEMATICAL PROCEDURE

A. Streamline Functions

In two-dimensional flowline or streamline modeling
of rolling processes, the material flow in the steady state
condition is assumed to follow prescribed lines. Hereby
the streamline is defined as a one parameter family of
curves, where designating a specific value to the param-
eter variable corresponds to defining one streamline,
determined by a relationship between x and z. In
general, a plane strain streamline is described by Eq. [1],
where zs is the streamline parameter varying from 0 to 1,
and / represents the relationship between x and z for a
given value of zs

zs ¼ /ðx; zÞ: ½1�

The function /(x, z) determines the nature of the
streamline. In this paper, the function /(x, z) is defined
by Eq. [2] based on a recently reported stream func-
tion[26]

/ðx; zÞ ¼ z1ðxÞ

¼
z 1

e 1þ s
eþ 1� s

e

� �
d�x
d

� �2:1� ��mh i1
m

; x � d

z 1
e 1þ s

e

� ��m� �1
m� z 1

s ; x>d

;

8
><

>:
½2�

where d ¼ R sin ðhÞ and h ¼ cos�1 Rþ s� eð Þ=R.
The principle of streamlines and the meaning of the

geometric parameters of Eq. [2] are shown in Figure 2.
Equation [2] defines the function /ðx; zÞ prior, during,

and after the deformation zone. The introduction of the
parameter m, which is assumed to be 50 in this paper,
guarantees a continuous first and second derivative of
the function 1ðxÞ of Eq. [2] in x = 0.[26] The exponent of
2.1 in Eq. [2] has been chosen such that both the
function in the deformation zone is quasi-parabolic, and

Fig. 1—Schematic representation of the rolling process and the defi-
nition of the rolling parameters.
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at x = d the first and second derivatives of 1ðxÞ are
continuous functions.

Equation [3] ensures that material points follow the
streamlines determined by Eq. [1]:

vx ¼kðx; zÞ @/ðx; zÞ
@z

vz ¼� kðx; zÞ @/ðx; zÞ
@x

½3�

Hereby kðx; zÞ is an arbitrary function of x and z.
In order to have a kinematically admissible velocity

field, at any time the incompressibility condition of Eq.
[4] must be fulfilled.

_exx þ _ezz ¼
@

@x
vxðx; zÞ þ

@

@z
vzðx; zÞ ¼ 0 ½4�

Alternatively, it is also possible to invert relationship
1 and express z as a function of x, and zs, as in Eq. [5].

z ¼ uðx; zsÞ ½5�

Consequently, every function of x and z can be
expressed as a function of x and zs. As a consequence
functions of x and zs will be denoted by means of an
asterisk. For example, combining Eqs. [5] and [3] results
in Eq. [6]:

vxðx; zÞ ¼vxðx;uðx; zsÞÞ ¼ v�xðx; zsÞ ¼ k�ðx; zsÞ
@/ðx; zÞ
@z

vzðx; zÞ ¼vzðx;uðx; zsÞÞ ¼ v�zðx; zsÞ ¼ �k�ðx; zsÞ
@/ðx; zÞ
@x

½6�

Substitution of Eq. [6] in Eq. [4] results in Eq. [7]

Fig. 2—The principle of streamlines according to Eqs. [1] and [2]. Lines for values of zs going from 0 to 1 are plotted.
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Elaboration of Eq. [7] results in Eq. [8]

@

@x
k�ðx; zsÞ ¼ 0: ½8�

Equation [8] implies that in order to fulfill both the
incompressibility and the condition of the material flow
along the predefined streamlines, the function k�ðx; zsÞ
should be dependent only on zs. Assuming streamlines
according to Eq. [2], that condition yields in the
expression of the velocity field in Eq. [9]

v�xðx; zsÞ ¼k�ðzsÞfðxÞ

v�zðx; zsÞ ¼ � k�ðzsÞ
zs

fðxÞ
d

dx
fðxÞ:

½9�

The x-component of the velocity is expressed as a
product of a factor depending only on the variable zs,
and a factor depending only on the variable x. A major
disadvantage of the streamline approach is that in order
to have a constant x-component of the velocity field
over the thickness (for different values of zs) for certain
values for x, as would be necessary if the deformation
zone were approximated by the box in Figure 2, and one
would want a uniform entrance and exit velocity over
the sheet’s thickness outside the deformation zone, the
function k� should be independent of zs. That is due to
fact that the contributions of x and zs are separated as a
product of factors, which consequently would impose
the function k� to be a constant. In that case, there
would be a conflict with the demand to have various
rates of deformation flow across the thickness along the
x-direction, which would be necessary in order to
capture the effect of the higher velocity near the contact
surface compared to the middle of the plate. That would
explicitly be necessary if one would like to incorporate
the effect of different frictional conditions between the
rolls and the plate. In that case there clearly should be a
dependence of zs. It could be concluded that previously
described method fails in capturing both a uniform
velocity outside the deformation zone and a through
thickness variation of the x-component of the velocity
within the deformation zone.

B. A New Model

1. Velocity field
In the current approach the material is not longer

forced to follow the streamlines determined by
zs = constant, whereas zs is now considered as a new
coordinate, defined by Eq. [1]. However, the x-compo-
nent of the velocity is prescribed in the specimen,
depending on the x coordinate, and the zs coordinate,

and is a function of the friction conditions. In this
approach, except for the mid-thickness part and the
surface of the plate, the material streamlines are initially
unknown, contrary to the streamline models. The
deformation zone is considered to be delimited by the
vertical lines at x = 0 and x = d, cf. Figure 2. The
current research aims to present a kinematically admis-
sible velocity field, which fulfills following conditions:

(i) At the entrance and the exit of the rolling process,
the velocity is uniform across the thickness.

(ii) The incompressibility condition is fulfilled at all
points in the material.

(iii) In the middle (zs = 0) and the surface (zs = 1) of
the plate, the material follows the streamlines
(zs = constant) as defined by Eqs. [1] and [2].

iv) At the surface, the velocity field is prescribed with
a parameter that is directly linked to the friction
conditions between the rolls and the plate.

The x-component of the velocity field is assumed to be
a function of x and zs in the deformation zone:

v�xðx; zsÞ ¼ f1ðxÞð1� zns Þ þ f2ðxÞzns
¼ f2ðxÞ � f1ðxÞ½ �zns þ f1ðxÞ: ½10�

In the middle of the plate, the coordinate zs equals 0,
and the x-component of the velocity is given by the
function f1ðxÞ. At the surface of the plate, zs equals 1,
and the x-component of the velocity is given by the
function f2ðxÞ. The dependency of the velocity of the
through thickness coordinate zs is an nth power law.
The parameter n, which should be greater than 1 in
order to impose that the variation of the velocity is the
highest near the surface, controls the difference in
velocity of deformation flow across the thickness due to
friction. The parameter n is material and temperature
dependent.
The boundary condition (i) is translated mathemati-

cally into Eq. [11] as follows:

f1ðx ¼ 0Þ ¼f2ðx ¼ 0Þ ¼ vIN

f1ðx ¼ dÞ ¼f2ðx ¼ dÞ ¼ vOUT

½11�

The condition (ii) is the incompressibility condition of
Eq. [4]. The first term of Eq. [4] results in Eq. [12] if one
substitutes the proposed expression of Eq. [10]:

@

@x
vxðx; zÞ ¼

@

@x
v�xðx; zsÞ þ

@

@zs
v�xðx; zsÞ

@zs
@x

¼ d

dx
f2ðxÞ �

d

dx
f1ðxÞ


 �
zns þ

d

dx
f1ðxÞ

þ f2ðxÞ � f1ðxÞ½ �nzn�1s

@zs
@x

½12�

The second term of Eq. [4] is given by Eq. [13]:

@

@z
vzðx; zÞ ¼

@

@zs
v�zðx; zsÞ

@zs
@z

: ½13�
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Substituting the first and second terms of the incom-
pressibility condition of Eq. [4] by formulas 12 and 13
and considering the expression for zs (Eqs. [1] and [2])
results in the partial differential Eq. [14] in the z-
component of the velocity expressed in terms of x and zs:

@

@z
vzðx; zÞ ¼ �

1

1ðxÞ
d

dx
f2ðxÞ �

d

dx
f1ðxÞ

� 	
zns

�

þ d

dx
f1ðxÞ þ f2ðxÞ � f1ðxÞ½ �n zns

1ðxÞ
d

dx
1ðxÞ

	

½14�

Integration of Eq. [14] yields to the Eq. [15]:

v�zðx; zsÞ

¼ � 1

1ðxÞ

d

dx
f2ðxÞ �

d

dx
f1ðxÞ


 �
znþ1s

nþ 1
þ d

dx
f1ðxÞzs

þ nðf2ðxÞ � f1ðxÞÞ
znþ1s

nþ 1

1

1ðxÞ
d

dx
1ðxÞ

2

6664

3

7775

þ gðxÞ: ½15�

Thereby the function g(x) is an arbitrary function of
x, which is determined by means of boundary condi-
tions. According to the boundary condition (iii), the
z-component of the velocity is 0 if zs equals to 0, for all
values of x, therefore, the function g(x) for this
condition is equal to 0.

Condition (iii) at the outer flowline states that the
material should follow the flowline for zs = 1. Therefore,
for all values ofx, the conditionofEq. [3] results inEq. [16]:

v�xðx; 1Þ
v�zðx; 1Þ

¼ �
@zs
@z
@zs
@x

: ½16�

Considering Eqs. [1] and [2] for zs, and the expres-
sions 10 and 15 for the velocities, Eq. [16] results in
differential Eq. [17]. In order not to overload the
notations, the arguments of the functions are no longer
written from here, and a derivative of a function of one
argument is noted with an accent (¢)

10

12
¼ � 1

1

1
nþ1 f02 � f01

� �
þ nðf2 � f1Þ 10

1

h i
þ f01

f2
: ½17�

Further elaboration of Eq. [17] results in Eq. [18].

f2
10

1
¼ 1

nþ 1
f02 � f01
� �

þ n

nþ 1
ðf2 � f1Þ

10

1

þ f01
1

nþ 1
f2 þ

n

nþ 1
f1


 �
10

1
¼ 1

nþ 1
f02 þ

n

nþ 1
f01:

½18�

The contribution of the function f1 and f2 in Eq. [18]
can be captured by one function h which is introduced in
Eq. [19]

hðxÞ ¼ 1

nþ 1
f2ðxÞ þ

n

nþ 1
f1ðxÞ ½19�

Equations [18] and [19] yield in following differential
Eq. [20] for h as a function of 1 and its derivative

10

1
¼ h0

h
: ½20�

The solution for h is given in Eq. [21].

hðxÞ ¼ 1

nþ 1
f2ðxÞ þ

n

nþ 1
f1ðxÞ ¼ C1ðxÞ ½21�

Equation [21] defines a relationship between the func-
tions f1 and f2. When Eq. [2] is considered, the func-
tion 1ðxÞ varies from 1

e to 1
s. If the constant C is equal

to evIN,which is necessary to fulfill the mathematical
translation of condition (i) for the expression for the
initial velocity as given in Eq. [11], and the condition
for the final velocity of Eq. [11] is fulfilled, Eq. [21]
defines an extra relationship between vIN and vOUT, gi-
ven in Eq. [22]:

evIN ¼ svOUT ½22�

Condition 22 between the initial and final velocities is
automatically fulfilled, since it expresses again the
material’s incompressibility (condition ii) in the defor-
mation zone.
An assumption of the difference in x component of

the velocity between surface and middle of the sheet,
(f2 � f1)(x), is expressed by Eq. [23]:

f2 � f1 ¼ aðevIN1� f1;refÞ ¼ aDfref ½23�

The parameter a controls the difference between the
x-component of the velocity between the top surface
and the middle of the plate. Higher values of a corre-
spond to higher differences between the functions f1
and f2. The parameter a has a monotonous relation-
ship with the frictional conditions since more friction
will cause larger differences in the velocity along the
rolling direction between the mid-thickness and the
surface of the sheet. The parameter a is a function of
the material’s parameters, and technological parame-
ters such as temperature and frictional conditions. The
reference function f1,ref introduced in Eq. [23] repre-
sents the x-component of the velocity in the middle of
the plate. This component is smaller compared to zero
friction x-component of the velocity, namely ef(x)vIN,
and it becomes larger after the neutral point is
reached. The function f1,ref is defined in Eq. [24].

f1;refðxÞ ¼ 1� e�a
x
dð Þ

b
� 	

vOUT � vINð Þ þ vIN: ½24�

The parameter b is chosen to be equal to 3 in order to
have the reference function of Figure 3. A higher value
for b increases the absolute value of Dfref, whereas a
lower value for b decreases the difference with the
outcome velocity at x = d. Since the difference between
the middle and the outer velocity is controlled by the
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parameter a, see Eq. [23], the choice for b is somewhat
arbitrary, as long as it is positive, and not too small. The
parameter a is chosen such that Dfref is zero at a certain
value for x*, and represents the x-value of the neutral
point. It is given by Eq. [25].

a ¼ � d

x�


 �b

ln 1� vIN
Dv

efðx�Þ � 1ð Þ
� �

½25�

In this analysis, x* is chosen to be at the half of the
deformation zone. The functions vINef and f1,ref are
shown in Figure 3.

Based on the expression for h (Eq. [21]) and for f2 � f1
(Eq. [23]), the functions f1 and f2 can be determined.

The x component of the velocity for several values of
the parameter a for the current rolling process at the
middle layer (f1), and the surface layer (f2) are plotted in
Figure 4.

At the contact surface, the initial and final velocities
(function f2) are identical, and are initially higher and
then lower than the velocities in the middle of the plate
(function f1) because of the frictional conditions, which
explains the observed profile of a deformed rectangular
grid, put on a plate before the process. The higher the

value for a, the higher the difference in velocity between
middle and top.
The expressions for the velocity as a function of x and

zs of Eqs. [10] and [15], fulfilling all the proposed
conditions, is thereby completely determined. Based on
the analytical expressions for vx and vz, the velocity
gradient tensor can be calculated.

2. Final deformation
In the deformation zone, except for the beginning and

the end, there is a through-thickness gradient in the x
component of the velocity. That leads to experimentally
observed deformations of an initially rectangular grid
brought on the plate as observed for example in the
research of Ji et al.[30] The distortions of the FE mesh for
the current rolling process have been calculated by a
conventional FE model in Deform 2D� for several linear
coulomb friction coefficients are shown in Figure 5.
The simulation of rolling was performed with roll

diameter of R = 120 mm, yield point of the material of
380 MPa and Poisson’s ratio of 0.3. Three different
friction coefficients of l = 0.1, l = 0.15, l = 0.25
were chosen. Although a simplified coulomb friction
was considered, Figure 5 shows that the final deforma-
tion of an initially rectangular grid is strongly dependent
on the frictional conditions between the rolls and the
surface of the sheet. In previous section, a method has
been introduced to characterize the through-thickness
velocity gradient by means of the parameter a. Equation
[23] shows that the higher the value for a, the higher the
velocity difference between f1 and f2, and the higher the
velocity gradient over the plate’s thickness. A higher
velocity gradient leads to a more extensive distortion of
the grid.
Two material points of the plate with the same

x-coordinate but a different z position, before the
deformation zone will have a difference in x-coordinate
after deformation given in Eq. [26]

Dx ¼ vOUTðt2 � t1Þ ½26�

Hereby t1 and t2 are the times for material point 1 and
2 respectively to pass the deformation zone. The

Fig. 3—The reference function fref, together with the function
evINf(x) as a function of the x-position in the deformation zone. The
function evINf(x) represents the x-component of the velocity when
there is no difference between the outer and middle layer of the
plate.

Fig. 4—The function f1 (left-hand side) and f2,(right-hand side), defining the x-component of the velocity at the middle and the surface for sev-
eral values for the parameters a from 0 to 1 in steps of 0.1. The parameter n = 2.
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difference in final x-value Dx between 2 points is given
by Eq. [26], since from the time the fastest point leaves
the deformation zone, it moves a time t2 � t1 at a
velocity vOUT until also the second point leaves the
deformation zone. The final distortion of an initially
vertical line can be expressed by the function DxðzINIÞ,
which gives the difference in time to pass the deforma-
tion zone for all initial values of z, defined as zINI,
compared to a point at the middle of the sheet. The
function DxðzINIÞ is defined as in Eq. [27].

DxðzINI; n; aÞ ¼ vOUT

Zd

0

dx

vxðx; zs ¼ 0Þ �
Zd

0

dx

vxðx; zsÞ

2

4

3

5:

½27�

In the first integral of Eq. [27], the coordinate zs is not
a constant, since the flowlines are not exactly followed.
The integral for the time, together with the final z
coordinate, can be calculated numerically, by dividing
the deformation zone in N small steps Dx, and following
the procedure presented below.

x1 ¼0
z1 ¼zIN:

Loop over N steps

Dx ¼ d

N

xi ¼xi�1 þ Dx

Dzi ¼
vzðxi�1; zi�1Þ
vxðxi�1; zi�1Þ

Dx

zi ¼zi�1 þ Dzi

Dti ¼
Dx

vxðxi�1; zi�1Þ
ti ¼ti�1 þ Dti

End

zOUT ¼zN
t ¼tN:

The procedure allows not only to determine the function
DxðzINI; n; aÞ, but also the function DxðzOUT; n; aÞ, the
profile of an initially vertical line as a function of the final
height, and the friction parameters n and a.
Experimentally, one can determine the deformation

profile of an initially vertical line as a function of the
final z-coordinate zOUT, namely DxEXPðzOUTÞ. The
friction parameters n and a can be calibrated based on
these values that result in a final deformation profile that
corresponds the best with the experimentally determined
deformation line. The optimal value for n and a, nOPT

and aOPT, can be found with a minimization of the
function in Eq. [28]

Fig. 5—Deformation patterns of initially rectangular grid emerged after 40 pct thickness reduction as predicted by conventional finite element
code Deform 2D� for various friction conditions.
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ðnOPT; aOPTÞ ¼ min
n;a

ZzFINAL¼e

zFINAL¼0

DxðzOUT; n; aÞ � DxEXPðzOUTÞ½ �2dzOUT

0

B@

1

CA: ½28�

Fig. 6—Velocity and velocity gradient tensor as a function of the position through the deformation zone (x), for different values of the through-
thickness coordinate (zs). zs varies in steps of 0.1 from 0 to 1. The value of the parameter n is 2, and a = 1. (a) vx, (b) vz, (c) Lxx, (d) Lxz, (e)
Lzx, (f) Lzz.
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3. Velocity gradient tensors
The velocity gradient tensors derived from the

velocity field are the input for polycrystal plasticity
models which enable calculating the deformation
texture and the material’s plastic anisotropy. The
components of the second rank tensor are given by
Eq. [29].

L�xx ¼
@vx
@x
¼ ðf02 � f01Þzns þ f01 þ nðf2 � f1Þ

10

1
zns

L�xz ¼
@vx
@z
¼ @v

�
x

@zs

@zs
@z
¼ 1 nzn�1s ðf2 � f1Þ
� �

L�zx ¼
@vz
@x
¼� 1

1
f002 � f001
� � znþ1s

nþ 1
þ f01zs þ n f02 � f01

� ��

� znþ1s

nþ 1

1

1


 �0
þ2ðf2 � f1Þ

znþ1s

nþ 1

1

1


 �00	

þ 1

12
f02 � f01
� � znþ1s

nþ 1
þ f1zs þ nðf2 � f1Þ

znþ1s

nþ 1

10

1

� 	

¼ � 1

1
f002 � f001
� � znþ1s

nþ 1
þ f01zs � n f02 � f01

� � znþ1s

nþ 1

10

12

�

�nðf2 � f1Þ
znþ1s

nþ 1

12100 � 21102

14

#

þ 1

12
f02 � f01
� � znþ1s

nþ 1
þ f1zs þ nðf2 � f1Þ

znþ1s

nþ 1

10

1

� 	

½29�

L�zz ¼
@vz
@z
¼ �L�xx

Since by construction of Eq. [2], both 10 as 100

are continuous functions, in the entire region
x 2 �1;þ1� ½, all components of the velocity gradient
tensor are also continuous during the process.

C. Texture Prediction

The x-range of the deformation zone is divided in
equidistant steps. Per step, the velocity gradient is
interpolated at the middle of the interval. The velocity
gradient tensor is imposed until the deformation gradi-
ent of Eq. [30] is reached

Fij ¼ dij þ LijDt ¼ dij þ Lij
Dx
vx;ij

½30�

Hereby the indices ij refer to the elements of the
tensors, and dij is Dirac’s delta. Per step, an updated
Lagrangian technique is used, which implies that at
the beginning of the step, the deformation gradient
tensor is equal to the unity tensor. The velocity and
the velocity gradient tensor are calculated based on
the analytical formulation presented in previous sec-
tion. The VPSC simulation of the texture consists of a
sequence of these N steps. In this paper, 10 steps have
been considered.

IV. RESULTS AND DISCUSSION

A. Velocity Fields and Velocity Gradient Tensor

Figure 6 shows the velocity and the velocity gradient
tensor predicted by the model for the case of the rolling
process with geometry presented in Section II, for
different values of zs, a value for the parameter n of 2,
and a of 1.
Note that graphs of Figure 6 are expressed as a

function of position, and not as a function of time. The
latter can be misleading since the x-component of the
velocity is increasing with increasing values for x, and
the time to overcome a given x-range is consequently
decreasing. The xz-component of the velocity gradient
tensor changes from positive to negative for the x-value
where f2 = f1, which is at the neutral point, being
located at x = d/2 in this analysis as mentioned above.
The difference at the outer surface in the xz shear

component of the velocity gradient tensor, Lxz, for
different values of the frictional parameter a is shown in
Figure 7.
The Lxz component shows a sine-shaped type of

curve, which was the assumption for shear in study of
Engler et al.[18] The sine-shaped function implies that
due to the friction, the top layer first moves faster than
the underlying layers, and later, when the frictional force
works in the opposite direction, this layer moves slower
compared to the underlying layers. This effects become
more pronounced for higher values of a.
In Figure 8 the developed analytical model is com-

pared with the FE simulation of the study of Engler
et al.[18] The rolling process considered has a plate
reduction from 4.14 to 3.48 mm, with a rolling radius of
127 mm moving with an angular velocity of 1.5 rota-
tions per minute.
The deformation gradient rates show a good qualita-

tive agreement for all 3 lines considered. In the FE
simulations however, the intensities of the peaks of the
deformation gradient rates are higher, sometimes up to
3 times. On the other hand, the peaks are broader in the
analytical model simulation. Since the ratios of corre-
sponding peak height differences are roughly the
reciprocal of the ratios of corresponding peak width

Fig. 7—The xz-component of the velocity gradient tensor at the out-
er surface for different values of a. a is varying from 0 (horizontal
curve) to 1 (external curve) in equidistant steps of 0.1.
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differences, the time integrals of the deformation gradi-
ent rates, or in other words the final deformation
gradients, are similar.

According to the second equation of Formula 29,
Figures 6(d) and 7, the xz-(or 13-) shear rate predicted
by the model changes sign at the same x coordinate,
independent of the through-thickness position. In the
FE simulations on the left-hand side of Figure 8, it can

be seen that the point in time where the component _e13
changes sign are similar for all values of zs, namely close
to 2.5 seconds. Although in the case where zs = 0.8 that
point is shifted to the left, the value for _e13 remains small
around 2.5 seconds. Since in the rolling process consid-
ered the relative through-thickness difference in x
component of the velocity of the sheet is small, as
can be seen in Figure 6(a), similar values for time

Fig. 8—Comparison of the deformation gradient rates between a finite element simulation and the analytical velocity model for different places
in the sheet. On the left-hand side are the simulations of Engler et al., on the right-hand side the predictions of the analytical velocity model.
From upside downwards: zs = 0.1, zs = 0.5, and zs = 0.8.
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correspond approximately to similar values in x-posi-
tion. Therefore it can be concluded that the model’s
approximation that the change of xz-(or 13) shear rate
occurs at the same x-position is reasonable. As men-
tioned in Section III–B–2, in this work that position x*
(see Eq. [25]) has been chosen to be at the half of the
deformation zone, but it can be defined to be located
elsewhere.

B. Material Flow

When the velocity field is known, the flow of the
material can be tracked using the principle described
above in Section III–B–3. For 10 equidistant points in
the plate, starting from the middle towards the end of
the plate, the proposed velocity field has been imposed.
The path of the points is shown in Figure 9.

No macroscopic difference in material flow with the
flowline model of Figure 2 can be found. For a
streamline model determined by Eq. [2], the zIN-zOUT

relationship between the height of a material point at the
entry of the deformation zone and the height at the exit,
is determined by Eq. [31]

zIN
zOUT

¼ zðx ¼ 0Þ
zðx ¼ dÞ ¼

e

s
½31�

According to Eq. [30], streamline models result in a
linear relationship between zIN and zOUT. For current
analytical model, the relationship zIN-zOUT has been
numerically determined by the scheme presented above,
and is plotted for all values of n and a in Figure 10.

Figure 10 reveals that the relationship zIN-zOUT is
nearly linear, for all values of n and a. Based on
Figures 9 and 10, it can be concluded that the material
flow deviation from the flowlines in a flowline model of
the newly presented model is minimal.

C. Final Deformation

The deformation pattern of an originally vertical line
is shown in Figure 11 for a wide range of n and a values.

When a = 0, there is no deformation of an initially
vertical line, whereas for a = 2.5, the difference in
x-component between the outer surface and the middle
of an initially vertical line is ~0.4 mm. All values of a
between 0 and 2.5 cover deformations between these 2
limit cases.

D. Crystallographic Texture

Polycrystal plasticity models are capable of predicting
the deformation texture with high accuracy on the
condition that the displacement field is known. The
modeled through-thickness textures at three positions of
the rolled plate are shown by means of ODF sections in
Figure 12.

Figure 12(a) accounts for typical plane strain com-
pression texture with characteristic a and c fiber
orientations.[1] The a fiber consists of orientations where
the h110i direction tends to align along the rolling
direction. It includes the orientations {001}h110i,

{112}h110i, and {111}h110i. The c fiber consists of
orientations with the {111} planes parallel to ND, such
as {111}h110i and the {111}h112i orientation. The ODF
plots at three quarter thickness in Figure 12(b) show

Fig. 9—Material flow according to the new model.

Fig. 10—The initial z value vs the final z value for different values
for the parameters n and a. The final z value has been calculated by
tracking the material flow originating from before the deformation
zone at an initial height. a is varying from 0 to 2, and n is varying
from 1 to 5.

Fig. 11—Deformation profile of an original vertical line for several
values of the parameter a. n = 2, a is varying from 0 (vertical curve
left) to 2.5 (right curve) in steps of 0.15.
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texture qualitatively identical to one observed at the
mid-thickness plane. Figure 12(c) shows a typical shear
texture with prevailing Goss component {011}h100i, the
Brass orientation {211}h110i and the Copper compo-
nent {112}h111i, For a = 0.6, and n = 2, the average
through-thickness texture is dominated by the a and c
fiber orientations. Closer to the surface though, the
shear texture components become predominant.

The evolution of crystallographic texture is presented
by means of ODF plots along 3 points on a line at the
surface, at three quarters, and at the middle of the plate
for the intermediate case a = 0.6, n = 2 in Figure 13.
The ODF is represented in u2 ¼ 45 deg sections of the
Euler space for u1 2 0; 90½ � and / 2 0; 90½ �. It is impor-
tant to note that using such a section to represent the
entire ODF is only justified when the ODF shows
orthotropic symmetry, which is the case only in the
middle of the sheet where there is a plane strain
compression during the rolling process. The representa-
tion of Figure 13 is chosen in order not to overload the
figure.

On the top surface, the texture is initially evolving in
the direction of a typical plane strain compression
texture, to later on break up and evolve to a shear
texture. Again, the plots show a similar plane strain
compression texture in the middle and at three quarters
of the sheet, but with the maximum intensity about
2.5 times higher in the middle.

The influence of different frictional conditions on
texture evolution has been investigated by varying the
frictional parameter a in the analytical velocity model.
The results are shown in Figure 14, where the ODF is
plotted in u2 ¼ 45 deg sections of the Euler space at the
end of the process, and at the three quarter thickness for
the cases a = 0.7 to a = 1.2, in steps of 0.1. The
parameter n is 2 in all considered cases. The same

remark about the section as for Figure 13 should be
made.
From Figure 14 it can be concluded that for increas-

ing shear (increasing a), at mid-thickness the texture
evolves from a plane strain compression texture towards
a shear texture for higher values for a. The limit case is
somewhere between 0.8 and 0.9.

V. CONCLUSIONS

A new analytical model is presented that expresses
kinematically admissible velocity fields in rolling pro-
cesses. The model introduces a new coordinate which is
constant over the lines that are used as streamlines in
streamline models, but does not demand that prescribed
streamlines are followed exactly. The model has a
prescribed x-component of the velocity in the middle
of the plate, on the external surface, and both before and
after the deformation zone. The effect of shear in the
plate is incorporated by introducing 2 frictional param-
eters. The resulting material flow has shown to have no
significant deviation from the corresponding stream-
lines.
Two model parameters are introduced, namely the

parameter a and the parameter n. The parameter a
controls the difference in velocity between the top and
the middle of the plate. The parameter has a
monotonous relationship with the frictional condi-
tions. The parameter n controls the distribution of this
difference over the thickness of the plate. The param-
eter a is dependent on the material, the temperature,
and the frictional conditions, where the parameter
n is dependent only on the material and the tem-
perature.

Fig. 12—ODF plots in sections of constant u1 in steps of 5 deg for the parameter a = 0.6, and n = 2. Fig. 10(a): at middle of the plate.
Fig. 11(b): at three quarters of the thickness. Fig. 11(c): at the external surface. The filled triangle refers to the a fiber, the filled star to the c
fiber, the square to the {011}h100i component, the oval to the {011}h211i component, the cross to the {112}h111i component.
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The model is able to capture the observed through-
thickness shear deformation after rolling. The effect of
the frictional parameters on the predicted distortion of a
grid pattern attached to a plate has been shown. It
allows to experimentally determine the values of the
frictional parameters by a simple optical experiment for
a given rolling process.

The model is able to capture the observed through-
thickness shear deformation during rolling. The effect
of the frictional parameters on the predicted distortion
of a grid pattern has been shown to be able to
experimentally determine the values of those param-
eters by a simple optical experiment for a given rolling
process.

The model also provides an analytical expression for
the velocity gradient tensor, which can be used for fast
texture and anisotropy prediction, when coupling with a
polycrystal plasticity model. The results of through-
thickness texture predictions for different frictional
conditions have been presented. The differences in
texture prediction between the centreline and the upper
line show that there is a strong through-thickness
texture gradient, which is dependent on the frictional
conditions. Through-thickness texture measurements
can be used to calibrate the model parameters a and n.
As the presented model is analytical, it allows a fast

calculation of the texture that develops during the
rolling process. It could be used to implement plastic

Fig. 14—ODF plotted in u2 ¼ 45 deg sections of the Euler space at the external surface. From left to right, a is varying from 0.7 to 1.2 in steps
of 0.1. The parameter n is 2 in all cases.

Fig. 13—ODF plots in sections of constant u1 in steps of 5 deg for the parameter a = 0.6, and n = 2. (a) At middle of the plate, (b) at three
quarters of the thickness, (c) at the external surface.
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anisotropy and therefore a more advanced material law
in models that calculate rolling forces and torques.
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