716 research outputs found

    Possible field-tuned SIT in high-Tc superconductors: implications for pairing at high magnetic fields

    Full text link
    The behavior of some high temperature superconductors (HTSC) such as La2xSrxCuO4\rm La_{2-x}Sr_{x}CuO_{4} and Bi2Sr2xLaxCuO6+δ\rm Bi_{2}Sr_{2-x}La_xCuO_{6+\delta}, at very high magnetic field, is similar to that of thin films of amorphous InOx near the magnetic field-tuned superconductor-insulator transition. Analyzing the InOx data at high fields in terms of persisting local pairing amplitude, we argue by analogy that local pairing amplitude also persists well into the dissipative state of the HTSCs, the regime commonly denoted as the "normal state" in very high magnetic field experiments.Comment: Revised figures and reference

    Erosion waves: transverse instabilities and fingering

    Full text link
    Two laboratory scale experiments of dry and under-water avalanches of non-cohesive granular materials are investigated. We trigger solitary waves and study the conditions under which the front is transversally stable. We show the existence of a linear instability followed by a coarsening dynamics and finally the onset of a fingering pattern. Due to the different operating conditions, both experiments strongly differ by the spatial and time scales involved. Nevertheless, the quantitative agreement between the stability diagram, the wavelengths selected and the avalanche morphology reveals a common scenario for an erosion/deposition process.Comment: 4 pages, 6 figures, submitted to PR

    Order from Disorder in Graphene Quantum Hall Ferromagnet

    Full text link
    Valley-polarized quantum Hall states in graphene are described by a Heisenberg O(3) ferromagnet model, with the ordering type controlled by the strength and sign of valley anisotropy. A mechanism resulting from electron coupling to strain-induced gauge field, giving leading contribution to the anisotropy, is described in terms of an effective random magnetic field aligned with the ferromagnet z axis. We argue that such random field stabilizes the XY ferromagnet state, which is a coherent equal-weight mixture of the KK and KK' valley states. Other implications such as the Berezinskii-Kosterlitz-Thouless ordering transition and topological defects with half-integer charge are discussed.Comment: 4 pages, 2 figure

    Stability and instability in parametric resonance and quantum Zeno effect

    Get PDF
    A quantum mechanical version of a classical inverted pendulum is analyzed. The stabilization of the classical motion is reflected in the bounded evolution of the quantum mechanical operators in the Heisenberg picture. Interesting links with the quantum Zeno effect are discussed.Comment: 6 pages, 3 figure

    SecureKeeper: confidential zooKeeper using intel SGX

    Get PDF
    Cloud computing, while ubiquitous, still suffers from trust issues, especially for applications managing sensitive data. Third-party coordination services such as ZooKeeper and Consul are fundamental building blocks for cloud applications, but are exposed to potentially sensitive application data. Recently, hardware trust mechanisms such as Intel's Software Guard Extensions (SGX) offer trusted execution environments to shield application data from untrusted software, including the privileged Operating System (OS) and hypervisors. Such hardware support suggests new options for securing third-party coordination services. We describe SecureKeeper, an enhanced version of the ZooKeeper coordination service that uses SGX to preserve the confidentiality and basic integrity of ZooKeeper-managed data. SecureKeeper uses multiple small enclaves to ensure that (i) user-provided data in ZooKeeper is always kept encrypted while not residing inside an enclave, and (ii) essential processing steps that demand plaintext access can still be performed securely. SecureKeeper limits the required changes to the ZooKeeper code base and relies on Java's native code support for accessing enclaves. With an overhead of 11%, the performance of SecureKeeper with SGX is comparable to ZooKeeper with secure communication, while providing much stronger security guarantees with a minimal trusted code base of a few thousand lines of code

    Particle Motion in Rapidly Oscillating Potentials: The Role of the Potential's Initial Phase

    Full text link
    Rapidly oscillating potentials with a vanishing time average have been used for a long time to trap charged particles in source-free regions. It has been argued that the motion of a particle in such a potential can be approximately described by a time independent effective potential, which does not depend upon the initial phase of the oscillating potential. However, here we show that the motion of a particle and its trapping condition significantly depend upon this initial phase for arbitrarily high frequencies of the potential's oscillation. We explain this novel phenomenon by showing that the motion of a particle is determined by the effective potential stated in the literature only if its initial conditions are transformed according to a transformation which we show to significantly depend on the potential's initial phase for arbitrarily high frequencies. We confirm our theoretical findings by numerical simulations. Further, we demonstrate that the found phenomenon offers new ways to manipulate the dynamics of particles which are trapped by rapidly oscillating potentials. Finally, we propose a simple experiment to verify the theoretical findings of this work.Comment: 9 pages, 8 figures, published in PR

    Squeezing superfluid from a stone: Coupling superfluidity and elasticity in a supersolid

    Full text link
    In this work we start from the assumption that normal solid to supersolid (NS-SS) phase transition is continuous, and develop a phenomenological Landau theory of the transition in which superfluidity is coupled to the elasticity of the crystalline 4^4He lattice. We find that the elasticity does not affect the universal properties of the superfluid transition, so that in an unstressed crystal the well-known λ\lambda-anomaly in the heat capacity of the superfluid transition should also appear at the NS-SS transition. We also find that the onset of supersolidity leads to anomalies in the elastic constants near the transition; conversely, inhomogeneous strains in the lattice can induce local variations of the superfluid transition temperature, leading to a broadened transition.Comment: 4 page

    Murine Esophagus Expresses Glial-Derived Central Nervous System Antigens

    Get PDF
    Multiple sclerosis (MS) has been considered to specifically affect the central nervous system (CNS) for a long time. As autonomic dysfunction including dysphagia can occur as accompanying phenomena in patients, the enteric nervous system has been attracting increasing attention over the past years. The aim of this study was to identify glial and myelin markers as potential target structures for autoimmune processes in the esophagus. RT-PCR analysis revealed glial fibrillary acidic protein (GFAP), proteolipid protein (PLP), and myelin basic protein (MBP) expression, but an absence of myelin oligodendrocyte glycoprotein (MOG) in the murine esophagus. Selected immunohistochemistry for GFAP, PLP, and MBP including transgenic mice with cell-type specific expression of PLP and GFAP supported these results by detection of (1) GFAP, PLP, and MBP in Schwann cells in skeletal muscle and esophagus; (2) GFAP, PLP, but no MBP in perisynaptic Schwann cells of skeletal and esophageal motor endplates; (3) GFAP and PLP, but no MBP in glial cells surrounding esophageal myenteric neurons; and (4) PLP, but no GFAP and MBP in enteric glial cells forming a network in the esophagus. Our results pave the way for further investigations regarding the involvement of esophageal glial cells in the pathogenesis of dysphagia in MS

    Nonlinear waves in counter-current gas–liquid film flow

    Get PDF
    We investigate the dynamics of a thin laminar liquid film flowing under gravity down the lower wall of an inclined channel when turbulent gas flows above the film. The solution of the full system of equations describing the gas–liquid flow faces serious technical difficulties. However, a number of assumptions allow isolating the gas problem and solving it independently by treating the interface as a solid wall. This permits finding the perturbations to pressure and tangential stresses at the interface imposed by the turbulent gas in closed form. We then analyse the liquid film flow under the influence of these perturbations and derive a hierarchy of model equations describing the dynamics of the interface, i.e. boundary-layer equations, a long-wave model and a weakly nonlinear model, which turns out to be the Kuramoto– Sivashinsky equation with an additional term due to the presence of the turbulent gas. This additional term is dispersive and destabilising (for the counter-current case; stabilizing in the co-current case). We also combine the long-wave approximation with a weighted-residual technique to obtain an integral-boundary-layer approximation that is valid for moderately large values of the Reynolds number. This model is then used for a systematic investigation of the flooding phenomenon observed in various experiments: as the gas flow rate is increased, the initially downward-falling film starts to travel upwards while just before the wave reversal the amplitude of the waves grows rapidly. We confirm the existence of large-amplitude stationary waves by computing periodic travelling waves for the integral-boundary-layer approximation and we corroborate our travelling-wave results by time-dependent computations
    corecore