516 research outputs found

    Continuous-time random walk theory of superslow diffusion

    Full text link
    Superslow diffusion, i.e., the long-time diffusion of particles whose mean-square displacement (variance) grows slower than any power of time, is studied in the framework of the decoupled continuous-time random walk model. We show that this behavior of the variance occurs when the complementary cumulative distribution function of waiting times is asymptotically described by a slowly varying function. In this case, we derive a general representation of the laws of superslow diffusion for both biased and unbiased versions of the model and, to illustrate the obtained results, consider two particular classes of waiting-time distributions.Comment: 4 page

    Limiting distributions of continuous-time random walks with superheavy-tailed waiting times

    Full text link
    We study the long-time behavior of the scaled walker (particle) position associated with decoupled continuous-time random walk which is characterized by superheavy-tailed distribution of waiting times and asymmetric heavy-tailed distribution of jump lengths. Both the scaling function and the corresponding limiting probability density are determined for all admissible values of tail indexes describing the jump distribution. To analytically investigate the limiting density function, we derive a number of different representations of this function and, by this way, establish its main properties. We also develop an efficient numerical method for computing the limiting probability density and compare our analytical and numerical results.Comment: 35 pages, 4 figure

    First Amendment; Freedom of Speech; Commerical Speech and Advertising; Metpath, Inc. v. Imperato

    Get PDF
    The decision of Metpath, Inc. v. Imperato is indicative of the growing trend of the judiciary toward affording commercial speech the protective shield of the first amendment. As shown by Metpath, where the concern is advertising by a medical clinic, speech with commercial overtones is afforded protection where a public interest in the subject and content of the speech is demonstrated. However, the perimeters of such protection have not been defined by this or previous decisions

    How does the quality of a prediction depend on the magnitude of the events under study?

    Get PDF
    We investigate the predictability of extreme events in time series. The focus of this work is to understand, under which circumstances large events are better predictable than smaller events. Therefore we use a simple prediction algorithm based on precursory structures which are identified via the maximum likelihood principle. Using theses precursory structures we predict threshold crossings in autocorrelated processes of order one, which are either Gaussian, exponentially or Pareto distributed. The receiver operating characteristic curve is used as a measure for the quality of predictions we find that the dependence on the event magnitude is closely linked to the probability distribution function of the underlying stochastic process. We evaluate this dependence on the probability distribution function numerically and in the Gaussian case also analytically. Furthermore, we study predictions of threshold crossings in correlated data, i.e., velocity increments of a free jet flow. The velocity increments in the free jet flow are in dependence on the time scale either asymptotically Gaussian or asymptotically exponential distributed. If we assume that the optimal precursory structures are used to make the predictions, we find that large threshold crossings are for all different types of distributions better predictable. These results are in contrast to previous results, obtained for the prediction of large increments, which showed a strong dependence on the probability distribution function of the underlying process

    Directed transport in periodically rocked random sawtooth potentials

    Full text link
    We study directed transport of overdamped particles in a periodically rocked random sawtooth potential. Two transport regimes can be identified which are characterized by a nonzero value of the average velocity of particles and a zero value, respectively. The properties of directed transport in these regimes are investigated both analytically and numerically in terms of a random sawtooth potential and a periodically varying driving force. Precise conditions for the occurrence of transition between these two transport regimes are derived and analyzed in detail.Comment: 18 pages, 7 figure

    Chaos from turbulence: stochastic-chaotic equilibrium in turbulent convection at high Rayleigh numbers

    Full text link
    It is shown that correlation function of the mean wind velocity generated by a turbulent thermal convection (Rayleigh number Ra1011Ra \sim 10^{11}) exhibits exponential decay with a very long correlation time, while corresponding largest Lyapunov exponent is certainly positive. These results together with the reconstructed phase portrait indicate presence of chaotic component in the examined mean wind. Telegraph approximation is also used to study relative contribution of the chaotic and stochastic components to the mean wind fluctuations and an equilibrium between these components has been studied in detail

    Continuous-time random walk with a superheavy-tailed distribution of waiting times

    Full text link
    We study the long-time behavior of the probability density associated with the decoupled continuous-time random walk which is characterized by a superheavy-tailed distribution of waiting times. It is shown that if the random walk is unbiased (biased) and the jump distribution has a finite second moment then the properly scaled probability density converges in the long-time limit to a symmetric two-sided (an asymmetric one-sided) exponential density. The convergence occurs in such a way that all the moments of the probability density grow slower than any power of time. As a consequence, the reference random walk can be viewed as a generic model of superslow diffusion. A few examples of superheavy-tailed distributions of waiting times that give rise to qualitatively different laws of superslow diffusion are considered.Comment: 7 page

    Transition from phase to generalized synchronization in time-delay systems

    Get PDF
    The notion of phase synchronization in time-delay systems, exhibiting highly non-phase-coherent attractors, has not been realized yet even though it has been well studied in chaotic dynamical systems without delay. We report the identification of phase synchronization in coupled nonidentical piece-wise linear and in coupled Mackey-Glass time-delay systems with highly non-phase-coherent regimes. We show that there is a transition from non-synchronized behavior to phase and then to generalized synchronization as a function of coupling strength. We have introduced a transformation to capture the phase of the non-phase coherent attractors, which works equally well for both the time-delay systems. The instantaneous phases of the above coupled systems calculated from the transformed attractors satisfy both the phase and mean frequency locking conditions. These transitions are also characterized in terms of recurrence based indices, namely generalized autocorrelation function P(t)P(t), correlation of probability of recurrence (CPR), joint probability of recurrence (JPR) and similarity of probability of recurrence (SPR). We have quantified the different synchronization regimes in terms of these indices. The existence of phase synchronization is also characterized by typical transitions in the Lyapunov exponents of the coupled time-delay systems.Comment: Accepted for publication in CHAO

    How to avoid potential pitfalls in recurrence plot based data analysis

    Full text link
    Recurrence plots and recurrence quantification analysis have become popular in the last two decades. Recurrence based methods have on the one hand a deep foundation in the theory of dynamical systems and are on the other hand powerful tools for the investigation of a variety of problems. The increasing interest encompasses the growing risk of misuse and uncritical application of these methods. Therefore, we point out potential problems and pitfalls related to different aspects of the application of recurrence plots and recurrence quantification analysis

    Surrogate-assisted network analysis of nonlinear time series

    Full text link
    The performance of recurrence networks and symbolic networks to detect weak nonlinearities in time series is compared to the nonlinear prediction error. For the synthetic data of the Lorenz system, the network measures show a comparable performance. In the case of relatively short and noisy real-world data from active galactic nuclei, the nonlinear prediction error yields more robust results than the network measures. The tests are based on surrogate data sets. The correlations in the Fourier phases of data sets from some surrogate generating algorithms are also examined. The phase correlations are shown to have an impact on the performance of the tests for nonlinearity.Comment: 9 pages, 5 figures, Chaos (http://scitation.aip.org/content/aip/journal/chaos), corrected typo
    corecore