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Abstract. We investigate the predictability of extreme events
in time series. The focus of this work is to understand, under
which circumstances large events are better predictable than
smaller events. Therefore we use a simple prediction algo-
rithm based on precursory structures which are identified via
the maximum likelihood principle. Using theses precursory
structures we predict threshold crossings in autocorrelated
processes of order one, which are either Gaussian, exponen-
tially or Pareto distributed. The receiver operating charac-
teristic curve is used as a measure for the quality of predic-
tions we find that the dependence on the event magnitude is
closely linked to the probability distribution function of the
underlying stochastic process. We evaluate this dependence
on the probability distribution function numerically and in
the Gaussian case also analytically. Furthermore, we study
predictions of threshold crossings in correlated data, i.e., ve-
locity increments of a free jet flow. The velocity increments
in the free jet flow are in dependence on the time scale either
asymptotically Gaussian or asymptotically exponential dis-
tributed. If we assume that the optimal precursory structures
are used to make the predictions, we find that large threshold
crossings are for all different types of distributions better pre-
dictable. These results are in contrast to previous results, ob-
tained for the prediction of large increments, which showed
a strong dependence on the probability distribution function
of the underlying process.

1 Introduction

Systems with a complex time evolution, which generate a
great impact event from time to time, are ubiquitous. Exam-
ples include fluctuations of prices for financial assets in econ-
omy with rare market crashes, electrical activity of human
brain with rare epileptic seizures, seismic activity of the earth
with rare earthquakes, changing weather conditions with rare
disastrous storms, and also fluctuations of on-line diagnostics
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of technical machinery and networks with rare breakdowns
or black-outs. Due to the complexity of the systems men-
tioned, a complete modeling is usually impossible, either due
to the huge number of degrees of freedom involved, or due to
a lack of precise knowledge about the governing equations.

This is why one applies the framework of prediction via
precursory structures for such cases. The typical application
for prediction with precursory structures is a prediction of
an event which occurs in the very near future, i.e., on short
timescales compared to the lifetime of the system. A clas-
sical example for the search for precursory structures is the
prediction of earth-quakes (Jackson, 1996). A more recently
studied example is the short term prediction of strong turbu-
lent wind gusts, which can destroy wind turbines (Kantz et
al., 2004, 2006).

In a previous work (Hallerberg et al., 2007), we studied
the quality of predictions analytically via precursory struc-
tures for increments in an AR(1)-process and numerically in
a long-range correlated ARMA process. The long-range cor-
relations did not alter the general findings for Gaussian pro-
cesses, namely, that larger increments are better predictable.

Furthermore, we found other works which report the
same effect for the prediction of avalanches in SOC-models
(Shapoval and Shrirman, 2006) and in multi-agent games
(Lamper et al., 2002). In (Hallerberg and Kantz, 2008) we
demonstrate that the quality of the prediction of increments is
sensitively dependent on the probability distribution function
(PDF) of the distribution of the underlying process. Further-
more we found, that increments are the better predictable, if
the PDF of the process is Gaussian, that there is no significant
dependence on the event magnitude, if this PDF is a sym-
metrised exponential, and that larger events are the harder to
predict, if the PDF is a power law.

Since in earthquake prediction and systems which display
self organized criticallity the underlying distributions are def-
initely non-Gaussian, these results in comparison to our pre-
vious findings call for clarification.
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Indeed, the crucial distinction between our previous work
and the observations in (Shapoval and Shrirman, 2006) is that
we considered large increments as events, whereas in these
examples the events were defined by the magnitude of some
observable overcoming some predefined threshold. Conse-
quently, we study now how the quality of a prediction de-
pends on the event magnitude, if the events under study are
not increments but threshold crossings.

Therefore we investigate predictions of threshold cross-
ings in an autocorrelated process of order one [AR(1)] with
Gaussian, exponential and power law distributions.

Furthermore, we compare the results for this short-range
correlated processes with results for the prediction of thresh-
old crossing in experimental data.

After defining the prediction scheme in Sect.2.1 and the
method for measuring the quality of a prediction in Sect.2.2,
we explain in Sect.2.3 how to consider the influence on the
event magnitude. In Sect.2.4 we formulate a constraint,
which has to be fulfilled in order to find a better predictabil-
ity of larger (smaller) events. In the next section, we ap-
ply this constraint to compare the quality of predictions of
threshold crossings within Gaussian (Sect.3.1), exponential
distributed (Sect.3.2) and power law distributed AR(1) pro-
cesses (Sect.3.3). In the following we study the prediction
of threshold crossings in free jet data in Sect.4. In Sect.5
we study the dependence on the event magnitude for a more
realistic prediction procedure. Conclusions appear in Sect.6.

2 Definitions and set-up

The considerations in this section are made for a time se-
ries (Box, Jenkins and Reinsel, 1994; Brockwell and Davis,
1998), i.e., a set of measurementsxn at discrete timestn,
wheretn=t0+n1 with a sampling interval1 andn ∈ N.

The recording should contain sufficiently many extreme
events so that we are able to extract statistical information
about them.

We assume here that the event of interest can be identified
on the basis of the observations, more precisely, the value
of the observation function exceeding some threshold. We
express the presence (absence) of an event by using a binary
variableYn+1.

Yn+1 =

{
1 an event occurred at timen + 1,

0 no event occurred at timen + 1.
(1)

2.1 The choice of the precursor

When we consider prediction via precursory structures (pre-
cursors, or predictors), we are typically in a situation, where
we assume that the dynamics of the system under study has
both, a deterministic and a stochastic part. The determin-
istic part allows to assume that there is a relation between
the event and its precursory structure which we can use for
predictive purposes. However, if the dynamic of the system

would be fully deterministic there would be no need to pre-
dict via precursory structures, but one could try to model the
dynamical system.

In this contribution we focus on the influence of the
stochastic part of the dynamics and assume therefore a very
simple deterministic correlation between event and precur-
sor. The presence of this stochastic part determines that
we cannot expect the precursor to preceed every individual
event. That is why we define a precursor in this context as
a data structure which is typically preceeding an event, al-
lowing deviations from the given structure, but also allowing
events without preceeding structure.

For reasons of simplicity the following considerations are
made for precursors in real space, i.e., structures in the time
series. However, there is no reason not to apply the same
ideas for precursory structures, which live in phase space.

In order to predict an eventYn+1 occurring at the time
(n+1) we compare the lastk observations, to which we will
refer as precursory variable

x(n−k+1,n) = (xn−k+1, xn−k+2, ..., xn−1, xn) (2)

with a specific precursory structure

xpre
= (x

pre

n−k+1, x
pre
n−k+2, ..., x

pre
n−1, x

pre
n ). (3)

Once the precursory structurexpre is determined, we give
an alarm for an eventYn+1=1 when we findx(n−k+1,n) in the
volume

V pre(δ, xpre) =

n∏
j=n−k+1

(
x

pre
j −

δ

2
, x

pre
j +

δ

2

)
, (4)

whereδ determines the magnitude of the precursory volume.
Upto here we did not specify how to obtain a suitable pre-

cursorxpre which provides optimal predictions. As we dis-
cussed in (Hallerberg et al., 2007), there are at least two nat-
ural choices. As one can argue using concepts from prob-
abilistic forecasting (Hallerberg, Br̈ocker and Kantz, 2008),
the following choice should be superior to all other choices:
We define asxpre the vector for which the probability of an
event to follow is maximal. More precisely, we consider the
likelihood 1

L(Yn+1 = 1|x(n−k+1,n)) =
j (Yn+1 = 1, x(n−k+1,n))

ρ(x(n−k+1,n))
(5)

which provides the probability that an eventYn+1=1 follows
the precursorx(n−k+1,n). It can be calculated numerically
by determining the joint PDFj (Yn+1=1, x(n−k+1,n)) and the

1In this contribution we use the name likelihood for the prob-
ability that an event follows a precursorx and the term aposterior
PDF for the probability to find a precursorx before of an already
observed extreme event. Note that the names might be also used
vice versa, if one refers to the precursor as the previously observed
information, as it is the case in signal detection.
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marginal PDFρ(x(n−k+1,n)) of the process. Our prediction
strategy consists in determining those values of each com-
ponentxi of x(n−k+1,n) for which the likelihood is maximal.
One can argue that this maximum of the likelihood is the
optimal choice for a precursory variable, with respect to the
measure for the quality of a prediction, which we are going
to introduce in following section.

This strategy to identify the optimal precursor represents
a rather fundamental choice. In more applied examples one
looks for precursors which minimise or maximise more so-
phisticated quantities, e.g., discriminant functions or loss
matrices. These quantities are usually functions of the pos-
terior PDF or the likelihood, but they take into account the
additional demands of the specific problem, e.g., minimis-
ing the loss due to a false prediction. The strategy studied in
this contribution is thus fundamental in the sense that it en-
ters into many of the more sophisticated quantities which are
used for predictions and decision making.

2.2 Testing for predictive power

A common method to verify a hypothesis or to test the quality
of a prediction is the receiver operating characteristic curve
(ROC curve) (Green and Swets, 1966; Egan, 1975; Pepe,
2003). The idea of the ROC curve consists simply in compar-
ing the rate of correctly predicted eventsrc with the rate of
false alarmsrf by plottingrc vs.rf . The rate of correct pre-
dictionsrc and the rate of false alarmsrf can be obtained by
integrating the aposterior PDFsρ(x(n−k+1,n)|Yn+1=1) and
ρ(x(n−k+1,n)|Yn+1=0) on the precursory volume.

rc(δ, xpre) =

∫
V (δ,xpre)

ρ(x(n−k+1,n)|Yn+1 = 1) dx(n−k+1,n)

(6)

rf (δ, xpre) =

∫
V (δ,xpre)

ρ(x(n−k+1,n)|Yn+1 = 0) dx(n−k+1,n)

(7)

Note that these rates are defined with respect to the total num-
bers of eventsYn+1=1 and non-eventsYn+1=0. Thus the rel-
ative frequency of events has no direct influence on the ROC
curve, unlike on other measures of predictability, as e.g., the
Brier score or the ignorance.

Plotting rc vs. rf for increasing values ofδ one obtains a
curve in the unit-square of therf -rc plane (see, e.g., Fig.
5). The curve approaches the origin forδ → 0 and the
point (1, 1) in the limit δ → ∞, whereδ accounts for the
magnitude of the precursor volumeVpre(δ). The shape of
the curve characterises the significance of the prediction. A
curve above the diagonal reveals that the corresponding strat-
egy of prediction is better than a random prediction which is
characterised by the diagonal. Furthermore we are interested
in curves which converge as fast as possible to 1, since this
scenario tells us that we reach the highest possible rate of
correct prediction without having a large rate of false alarms.

That is why we use the so called likelihood ratio as a sum-
mary index, to quantify the ROC curve. For our inference
problems the likelihood ratio is identical to the slopem of
the ROC curve in the vicinity of the origin which implies
δ→0.

This region of the ROC plot is particularly interesting,
since it corresponds to a low rate of false alarms. The “like-
lihood ratio” is in our notation a ratio of aposterior PDFs.

m =
1rc

1rf
∼

ρ(xpre
|Yn+1 = 1)

ρ(xpre|Yn+1 = 0)

∣∣∣∣
rf ≈0,δ≈0

+O(δ). (8)

For other problems the name likelihood ratio is also used
for the slope at every point of the ROC curve.

Since we apply the likelihood ratio as a summary index
for ROC curves, we specify that for our purposes the term
likelihood ratio refers only to the slope of the ROC-plot at
the vicinity of the origin as in Eq. (8).

2.3 Addressing the dependence on the event magnitude

We are now interested in learning how the predictability de-
pends on the event magnitudeη which is measured in units
of the standard deviation of the time series under study. Thus
the event variableYn+1 becomes dependent on the event
magnitude

Yn+1(η) =


1, an event of magnitudeη or larger

occurred at timen + 1,
0, no event of magnitudeη or larger

occurred at timen + 1.

(9)

Via Bayes’ Theorem the likelihood ratio can be expressed
in terms of the likelihoodL

(
Yn+1(η)=1|xpre

)
and the total

probability to find eventsP
(
Yn+1(η)=1

)
. Inserting the tech-

nical details of the calculation of the likelihood and the total
probability one finds that the likelihood ratio depends sensi-
tively on the joint PDFj (x(n−k+1,n), Yn+1(η)=1) of precur-
sor and event.

Hence once the precursor is chosen, the dependence on
the event magnitudeη enters into the likelihood ratio, via the
joint PDF of event and precursor. This implies that the slope
of the ROC-plot is fully characterised by the knowledge of
the joint PDF of precursor and event.

Thus, in the framework of statistical predictions all kind of
(long-range) correlations which might be present in the time
series influence the quality of the predictions only through
their influence on the joint PDF.

Exploiting the likelihood ratio we can then determine the
dependence of the likelihood ratio and the ROC curve on the
events magnitudeη, via the dependence of the joint PDF of
the process under study. This approach is motivated by the
work of Egan (Egan, 1975), who already discovered that a
family of likelihoods can in many cases lead to an ordered
family of ROC curves, parameterized by the same parameter,
which parameterizes the likelihood.
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Fig. 1. Samples from the AR(1) processes with Gaussian, exponen-
tial and power-law distributions.

2.4 Constraint for increasing quality of predictions with in-
creasing event magnitude

In order to study the dependence of the likelihood ratio on
the event magnitude we are going to introduce a constraint
which the likelihood and the total probability to find events
have to fulfil in order to find a better predictability of larger
(smaller) events.

In order to improve the readability of the paper, we will
first introduce the following notations for the aposterior
PDFs, the likelihood and the total probability to find events

ρc(η, x(n−k+1,n)) = ρ(x(n−k+1,n)|Yn+1(η) = 1), (10)

ρf (η, x(n−k+1,n)) = ρ(x(n−k+1,n)|Yn+1(η) = 0), (11)

L(η, x(n−k+1,n)) = L(Yn+1(η) = 1|x(n−k+1,n)), (12)

P(η) = P(Yn+1(η) = 1). (13)

We can then ask for the change of the likelihood ratio with
changing event magnitudeη.

∂

∂η
m(Yn+1(η), x(n−k+1,n)) T 0. (14)

The derivative of the likelihood ratio is positive (negative,
zero), if the following sufficient conditionc(η) is fulfilled.

c(η, x(n−k+1,n)) =
∂

∂η
ln L(η, x(n−k+1,n)) −

−

(
1 − L(η, x(n−k+1,n)))

)(
1 − P(η)

) ∂

∂η
ln P(η) T 0. (15)

Hence one can tell for an arbitrary process, if extreme
events are better predictable, by simply testing, if the con-
dition in Eq. (15) is positive for the respective marginal PDF
of the events and the likelihood of event and precursor.
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Fig. 2. The autocorrelation functionc(τ )=
∑

n(xn − µ)(xn+τ −

µ)/((n − τ)σ2), with the meanµ and the standard deviationσ is
evaluated on the AR(1) correlated data.

3 Predictions of Threshold Crossing in short range cor-
related stochastic processes

In this section we test the conditionc(η, x(n−k+1,n)) as given
in Eq. (15) for threshold crossing in AR(1) processes, which
have a Gaussian, power-law and exponential distribution.

The most popular example for an extreme event, which
consist in a threshold crossing is probably the level of water
in a river, which can exceed the height of a levee and then
flood an area inhabited by humans. However one can easily
find other examples, in which it would be desirable to predict
the exceeding of a threshold. Inspired by this motivation, we
study the prediction of threshold exceedances in simple short
range correlated processes. We define our extreme event by
a valuexn+1 of the time series exceeding a given thresholdη

Yn+1 =

{
1, xn+1 ≥ η,

0, xn+1 < η.
(16)

where the event magnitudeη is again measured in units of
the standard deviation.

Due to the correlation of the AR(1) process we use the
present valuexn of a time series as a precursory variable for
the event happening at timen+1.

The short range correlated processes in focus are gener-
ated by an autoregressive model of order 1 [AR(1)] (see, e.g.,
(Box, Jenkins and Reinsel, 1994))

xn+1 = axn + ξn, (17)

whereξn are uncorrelated random numbers with mean zero.
The value and the sign of the coupling strengtha determines
whether successive values ofxn are clustered or spread.
Since we are not in particular interested in the influence of
the coupling strength we will seta=0.75 in all following
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considerations. Fora 6= 0 the process is exponentially cor-
related,〈xnxn+k〉=ak.

Typically the random numbersξn are chosen to be Gaus-
sian distributed. In this case the data generated by the AR(1)
model is as well Gaussian distributed. However, due to
the summation of random numbers in Eq. (17) also non-
Gaussian random numbers might lead to a process with an
approximately Gaussian distribution. That is why one has to
apply other methods in order to obtain an AR(1) correlated
process with a non-Gaussian distribution. We create the non-
Gaussian distributed AR(1) processes by replacing the data
of the Gaussian AR(1) process by random numbers, which
follow the desired distribution function. This is done by or-
dering the data of the Gaussian AR(1) process and the ran-
dom numbers according to their magnitude and then replac-
ing then-th largest value of the data set by then-th largest
random number. This procedure lead of course to local fluc-
tuations in the value of the correlations strengtha. However,
the characteristic behaviour of the process is still preserved,
as one can see in Figs.1 and2.

For the Gaussian AR(1) process all quantities which en-
ter into the prediction can be evaluated analytically. Since
in most cases the structure of the PDF is not know analyt-
ically, we evaluatec(η, xn) also numerically. In this case
the approximations of the total probability and the likelihood
are obtained by ”binning and counting” and their numeri-
cal derivatives are evaluated via a Savitzky-Golay-filter (Sav-
itzky and Golay, 1964; Press, 1992). The numerical eval-
uation is done within 107 data points. In order to check
the stability of this procedure, we evaluatec(η, xn) also on
20 bootstrap samples, which are generated from the original
data set such that choosing with repetition is allowed. These
bootstrap samples consist of 107 pairs of event and precur-
sor, which were drawn randomly from the original data set.
Thus their PDFs are slightly different in their first and second
moment and they contain different numbers of events. Evalu-
atingc(η, xn) on the bootstrap samples thus shows, how sen-
sitive our numerical evaluation procedure is towards changes
in the numbers of events. This is especially important for
large and therefore rare events.

In order to check the results obtained by the evaluation
of c(η, xn), we compute also the corresponding ROC curves
analytically and numerically.

Note that for both, the numerical evaluation of the condi-
tion and the ROC-plots, we used only event magnitudesη,
for which we found at least 100 events, so that the observed
effects are not due to a lack of statistics of the large events.

3.1 AR(1) process with a Gaussian distribution

As it is well known, the marginal PDF of the time stepxn in
an AR(1) process is a Gaussian,

ρ(xn, a) =

√
1 − a2

2π
exp

(
−

1 − a2

2
xn

2

)
. (18)

Since the magnitude of the events is naturally measured in
units of the standard deviationσ(a) we introduce a new
scaled variableη=

d
σ(a)

=d
√

1 − a2.
For a 6= 0 the process is exponentially correlated

〈xnxn+k〉=ak and the joint PDF of two successive values
ρ(xn, xn+1) is a bivariate Gaussian.

From this we derive the joint PDFj (xn, Yn+1=1) by a
simple integration using the Heaviside function2 as a filter
(see e.g. (Hallerberg et al., 2007) for details),

j (xn, Yn = 1) =

∫
dxn 2(xn − ησ)ρ(xn, xn+1)

The a posteriori PDFs to find or not to find events are then
given by

ρc(η, xn, a) =

√
1 − a2 exp

(
−

1−a2

2 x2
n

)
2
√

2πρ2(a, η)

erfc

(
η

√
2
√

1 − a2
−

axn
√

2

)
, (19)

ρf (η, xn, a) =

√
1 − a2 exp

(
−

1−a2

2 x2
n

)
2
√

2π(1 − ρ2(a, η))(
1 + erf

(
η

√
2
√

1 − a2
−

axn
√

2

))
.

(20)

The corresponding likelihood reads

L(η, xn, a) =
1

2
erfc

(
η

√
2
√

1 − a2
−

axn
√

2

)
. (21)

We recall that the optimal precursor is given byxpre which
maximises the likelihood and hencexpre=∞. In this case the
alarm volume is the interval[δ, ∞]. From the mean value of
the aposterior PDF〈xn〉 we can obtain the analytic structure
of the total PDF to find events

P(η, a) =
a√

2(1 − a2)

1

〈xn〉
exp

(
−

η2

2

)
. (22)

Using

erfc(z) ∼
exp(−z2)

√
πz

(
1 +

∞∑
m=1

(−1)m
1 · 3...(2m − 1)

(2z2)m

)
,(

z → ∞, |argz| <
3π

4

)
(23)

which can be found in (Abramovitz and Stegun, 1972) and
approximating the mean value〈xn〉 with the maximumx∗

n of

www.nonlin-processes-geophys.net/15/321/2008/ Nonlin. Processes Geophys., 15, 321–331, 2008



326 S. Hallerberg and H. Kantz: Dependence of the quality of a prediction on the event magnitude

-4

-2

 0

 2

 4

 0  5  10  15  20

c(
η,

 x
n,

 0
.7

5)

xn

η= 2.0
η= 4.0
η= 8.0

η= 16.0

Fig. 3. The conditionc(η, xn, 0.75) for the Gaussian distributed
AR(1) process as given by Eq. (26).
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the aposterior PDF

x∗
n =

√
2

π

a

1 − a2

exp

(
−

(
η

√
2
√

1−a2
−

ax∗
n√
2

)2
)

erfc

(
η

√
2
√

1−a2
−

ax∗
n√
2

)
∝

aη
√

1 − a2
(
1 +O

(
1
η2

)) , η → ∞, (24)

we obtain the following approximation of the total proba-
bility to find events

P(η, a) ∝

exp
(
−

η2

2

)
√

2η

(
1 +O

(
1

η2

))
, η → ∞ (25)

Note that this expression is only valid in the limit of large
η. In particular it does not hold forη=0. Using Eq. (21) and
Eq. (25) the constraintc(xn, a, η) reads

c(η, xn, a) ∝ −

√
2

π(1 − a2)

exp

(
−1
2

(
η

√
1−a2

− axn

)2
)

erfc

(
η

√
2
√

1−a2
−

axn√
2

)

+

(
η +

1

η

) (1 −
1
2erfc

(
η

√
2
√

1−a2
−

axn√
2

))
1 −

exp(−η2/2)
√

2η

(
1 +O

(
1
η2

))
(26)

Using again Eq. 23 we obtain the following asymptotic
behaviour for large values ofη

c(η, xn, a) → η

((
1 −O

(
exp(−η2)/η

)
1 −O

(
exp(−η2)/η

))−
1

√
1 − a2

)

+
axn

√
1 − a2

1(
1 +O(1/η2)

)
+

1

η

(
1 −O

(
exp(−η2)/η

)
1 −O

(
exp(−η2)/η

)) , η → ∞. (27)

This expression is larger than zero, if terms of the order
O
(
exp(−η2)/η

)
are negligible. Hence we can conclude, that

c(η, xn, a) is positive for large values ofη and arbitrary val-
ues ofxn.

However for finite values ofη we observe a dependence
on the precursory variable. Figures3 and 4 display that
c(η, xn, a) is positive for larger values, i.e., values, which are
closer to the ideal precursorxpre=∞. Hence we should ex-
pect larger events to be better predictable, if our alarm inter-
val is situated in this region, i.e., if the alarm interval[δ, ∞]

is small.
The ROC curves in Fig.5 support this result. In the region

of low rates of false alarms which corresponds to a small
alarm interval we find a strong dependence on the event mag-
nitude in the sense, that larger events are better predictable.

Finally one can discuss the case of the ideal precursor
xpre=∞. Inserting this value of the precursory variable into
Eq.26one obtainsc(η, xn, a)=0. This ideal precursor corre-
sponds to the idea of an ideal ROC curve, which is identical
to the axis of the ROC-plot. Thus no further improvement of
the ROC curve, e.g. by a change of the event magnitude, is
possible.
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Fig. 5. ROC curves for the Gaussian distributed AR(1) process
with correlation coefficienta=0.75. The ROC curves where made
via predicting threshold crossings of magnitudeη within 107 data
points. The predictions were made according to the prediction strat-
egy described in Sect.2.1. Note that the quality of the prediction
increases with increasing event magnitude.

3.2 AR(1) Process with Symmetrised Exponential Distri-
bution

The AR(1) data with exponential distribution were created
via replacing the values of the Gaussian distributed AR(1)
data with exponentially distributed i.i.d. random variables,
as explained in Sect.3. The exponential distributed AR(1)
process has the following PDF

ρ(x) =
λ

2
exp(−λ|xn|)

with λ=1 and was generated by transformation from uni-
formly distributed random numbers. (The uniformly dis-
tributed random numbers were generated by using the
Mersenne twister algorithm (Matsumoto and Nishimura,
1998).) Numerically we find the maximum of the likelihood
also in the region of large values ofxn, similar to the Gaus-
sian case with an alarm interval[δ, −∞]. We compute the
condition according to Eq. (15) and the ROC curves numer-
ically by using 107 exponential distributed AR(1) correlated
data.

Figure 6 compares the results of the numerical evaluation
of the conditionc(η, xn, λ). In the vicinity of the larger val-
ues of the data set, the conditionc(η, xn, λ) is positive as in
the Gaussian case.

The ROC curves in Fig.7 support the qualitative results
from Fig. 6, that larger events are better predictable. The
numerical ROC curves were made via predicting threshold
crossings in 107 AR(1) correlated exponentially distributed
data points according to the prediction strategy described in
Sect.2.1.
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Fig. 6. The condition according to Eq. (15) evaluated on 107 expo-
nentially distributed AR(1) correlated data .
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Fig. 7. The ROC curves where made via predicting threshold cross-
ings in 107 exponentially distributed AR(1) correlated data and
the predictions were made according to the prediction strategy de-
scribed in Sect.2.1.

This result is qualitatively different from the results of
prediction of increments in sequences of exponentially dis-
tributed i.i.d. random numbers in (Hallerberg et al., 2007). In
this previous work we found that the event magnitude has no
influence on the prediction of large increments in sequences
of exponentially distributed i.i.d. random numbers. This dif-
ference can probably be understood by the fact that the con-
dition c(η, xn) is not only a function of the event magnitude
η, but also a function of the event class and of the precursor
valuesxn.

3.3 Power-law distributed random variables

The AR(1) data with Power-law distribution were created via
replacing the values of the Gaussian distributed AR(1) data
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Fig. 8. The conditionc(η, xn, α, σ ) evaluated on 107 power-law
distributed AR(1) correlated data with varianceσ=1, mean zero
and power-law coefficientα=3. xn.

with symmetrised power-law distributed i.i.d. random vari-
ables, as explained in Sect.3.

The symmetrised power-law distributed i.i.d. random vari-
ables follow the following distribution

ρ(x) = αxα
min x−(α+1), x > xmin > 0

ρ(x) = α|xmax|
α

|x|
−(α+1), x < xmax < 0, (28)

with xmin=|xmax|=0.01 and power-law coefficientα=3
were generated by transformation from uniformly dis-
tributed random numbers. Since the distributions with
xmin = |xmax|=0.01 would allow no values in the interval
]xmin, xmax[, the resulting random numbers were shifted to
the left (right) by subtracting (adding)xmin. The result is
a symmetrised power law distribution with mean zero and
varianceσ=0.01, see Figs.1 and2. Finally, the values of the
AR(1) process were amplified by multiplication with a con-
stantca=100, so that the data set of the power law distributed
AR(1) process has a variance ofσ=1, as the Gaussion and
the exponential AR(1) process.

Figures 8 and 9 show the numerical results for
c(η, xn, α, σ ) and the ROC curves.

Although c(η, xn, α, σ ) is less regular than in the Gaus-
sian or the exponential case, its values are mainly above zero
which corresponds to the ROC curves in Fig.9.

Hence large threshold crossings are also within the Pareto
distributed AR(1) process better predictable than smaller. As
in the exponential case, this result for threshold crossings in
AR(1) correlated data is qualitatively different from the re-
sults for the prediction of increments in sequences of Pareto
distributed random numbers.
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Fig. 9. ROC-plot for the power-law distribution. The ROC curves
where made via predicting increments in 107 data points of the
AR(1) process with power-law distribution.

4 Predicting Threshold Crossings in Free Jet Data

In this section, we apply the method of statistical inference
to predict threshold crossings of the acceleration in a free jet
flow. Therefore we use a data set of 1.25× 107 samples of
the local velocity measured in the turbulent region of a round
free jet (Renner, Peinke and Friedrich, 2001). The data were
sampled by a hot-wire measurement in the central region of
an air into air free jet. One can then calculate the PDF of ve-
locity differencesan,k=vn+k−vn, wherevn andvn+k are the
velocities measured at time stepn andn + k. The Taylor hy-
pothesis allows to relate the time-resolution to a spatial res-
olution (Renner, Peinke and Friedrich, 2001). One observes
that for large values ofk the PDF of the velocity differences
is essentially indistinguishable from a Gaussian, whereas for
smallk, the PDF develops approximately exponential wings
(Van Atta and Park, 1972; Gagne et al., 1990; Frisch, 1995).
Figure 10illustrates this effect using the data set under study.

Thus the incremental data setsan,k provides us with the
opportunity to test the results for statistical predictions within
Gaussian and exponential distributed AR(1) correlated pro-
cesses on a data set, which exhibits correlated structures.

We are now interested in predicting larger values of
the accelerationan+j,k≥η in the incremental data sets
an,k=vn+k−vn. In the following we concentrate on the data
setan,10, which has an asymptotically exponential PDF and
the data setan,144, which has an asymptotically Gaussian
PDF. Since the free jet data are correlated, predicting the next
time step would be equivalent to predicting persistence. That
is why we choose a prediction horizon of seven time steps,
i.e., j=7 in the Gaussian regime (k=144) and a smaller time
horizonj=2 in the less correlated exponential distributed in-
crements (k=10). Note, that not only the event magnitude
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Fig. 11. The conditionc(η, an,k) evaluated in the exponential
regime (k=10)(a) and in the Gaussian regine (k=144)(b).

and the precurser, but also the predition horizon influences
the resulting ROC curves.

As in the previous sections we are hence exploiting the
conditional probabilities of the time series to make predic-
tions. We can now use the algorithm which was tested on the
previous examples to evaluate the condition for these data
sets. The results are shown in Fig.11. In both examples the
evaluation of the conditionc(η, an,k) reflects the behaviour
of the ROC curves. This example of the free jet data-set
shows, that the specific dependence of the ROC curve on the
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Fig. 12. ROC curves in the exponential (k=10)(a) and in the Gaus-
sian regime (k=144)(b).

event magnitude can also in the case of long-range correlated
data sets be characterised by the PDF of the underlying pro-
cess.

5 A more realistic prediction procedure

Predicting an above-threshold event when the current obser-
vation itself is already above the threshold might not be really
relevant in most applications.

We therefore modify here the sample on which predictions
are to be made: We define as events the subset of previous
events, where not only the future value is above threshold,
but simultaneously the current value is below threshold.

Yn+1 =

{
1 : xn+1 ≥ η, xn < η

0 : xn+1 < η, xn < η
(29)

The eventsYn=1 according to this definition are a subset
of the previously discussed events. Hence, this modifica-
tion reduces the number of events in the time series and
might render the prediction task more difficult. The cor-
responding ROC-curves in Figs.13–15 show qualitatively
the same dependence on the event magnitude as the ROC
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Fig. 13. ROC curves for the Gaussian AR(1) process made accord-
ing to the more realistic prediction procedure described in Sect.5.
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Fig. 14. ROC curves for the exponential distributed AR(1) process
made according to the more realistic prediction procedure described
in Sect.5

curves obtained in the previous section: Threshold crossings
in Gaussian, approximately exponential distributed, and ap-
proximately power-law distributed AR(1) processes are bet-
ter predictable, the larger they are.

6 Conclusions

We study the magnitude dependence of the quality of pre-
dictions for threshold crossings in autocorrelated processes
of order one and in measured accelerations in a free jet flow.
Using the present valuexn as a precursory variable we pre-
dict threshold crossings at a future time stepxn+j via statis-
tical considerations. In order to measure the quality of the
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Fig. 15. ROC curves for the power law distributed AR(1) process
made according to the more realistic prediction procedure described
in Sect.5.

predictions we use ROC curves. Furthermore, we introduce
a quantitative criterion which can determine, whether larger
or smaller events are better predictable.

We are especially interested in the influence of the prob-
ability distribution of the underlying process on changes in
the quality of the predictions, which are evoked by focus-
ing on different event magnitudes. For Gaussian, exponen-
tial and power law distributed AR(1) processes we find, that
larger threshold crossings are better predictable, the higher
the threshold. In all cases studied the behaviour of the
ROC curves was reasonably well reflected by the condi-
tion c(η, xn), which is an expression that depends on the to-
tal probability to find events and the likelihood to observe
an event after a given value ofxn. This theoretical results
could in principle help to understand the effects reported for
avalanches in systems, which display self organized critical-
ity (Shapoval and Shrirman, 2006).

The velocity measurements in the free jet flow provide
us with the opportunity to redo the predictions in data sets,
which inhibits correlated structures, and have either asymp-
totically Gaussian or asymptotically exponential distribu-
tions.

In both cases larger threshold crossings are also in the free
jet data set better predictable, the higher the threshold.

These results are in contrast to a previous study (Haller-
berg and Kantz, 2008) on the prediction of increments in
Gaussian, exponential and power law distributed i.i.d. ran-
dom numbers, in which we found a qualitatively different
behavior for exponentially and power law distributed ran-
dom numbers: In the exponential case we did not find any
significant dependence on the event magnitude, whereas in
the power-law case larger increments were much harder to
predict than smaller.
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This difference to the recent results for threshold crossings
can be explained by taking into account the different regimes
in which we find the optimal precursors:

When predicting increments, the optimal precursors are
typically among the smallest values in the data set, while for
the prediction of threshold crossings, large values are opti-
mal. Furthermore threshold crossings form a different class
of events. Hence both PDFs which contribute to the value
of c(η, xn), namely the likelihood and the total probability to
find events are different. Hence we should not be surprised
to find different results for the predictability of larger events.
In summary we find, that threshold crossings in AR(1) pro-
cesses and also in the correlated free jet flow data are the
better predictable, the larger they are.
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