62 research outputs found

    Effects of the Bacterial Extract OM-85 on Phagocyte Functions and the Stress Response

    Get PDF
    The effects of the bacterial extract OM-85 on the respiratory burst, intracellular calcium and the stress response have been investigated in human peripheral blood monocytes from normal donors. Activation of the respiratory burst during bacterial phagocytosis has been previously associated with heat shock/stress proteins synthesis. Whereas OM-85 stimulated superoxide production and increased Ca2+ mobilization, it fared to induce synthesis of classical HSPs. The lack of stress protein induction was observed even in the presence of iron which potentiates both oxidative injury and stress protein induction during bacterial phagocytosis. However OM-85 induced a 75–78 kDa protein, which is likely to be a glucose regulated protein (GRP78), and enhanced intracellular expression of interleukin-lβ precursor

    Poor farmers - poor yields: socio-economic, soil fertility and crop management indicators affecting climbing bean productivity in northern Rwanda

    Get PDF
    Climbing bean is the key staple legume crop in the highlands of East and Central Africa. We assessed the impact of interactions between soil fertility characteristics, crop management and socio-economic factors, such as household resource endowment and gender of the farmer, on climbing bean productivity and yield responses to basal P fertiliser in northern Rwanda. Through a combination of detailed characterisations of 12 farms and on-farm demonstration trials at 110 sites, we evaluated variability in grain yields and responses to fertiliser. Grain yields varied between 0.14 and 6.9 t ha−1 with an overall average of 1.69 t ha−1. Household resource endowment and gender of the farmer was strongly associated with climbing bean yield, even though these were partly confounded with Sector. Poorer households and women farmers achieved lower yields than wealthier households and male farmers. Household resource endowment and gender were likely to act as proxies for a range of agronomic and crop management factors that determine crop productivity, such as soil fertility, current and past access to organic manure and mineral fertiliser, access to sufficient quality staking material, ability to conduct crop management operation on time, but we found evidence for only some of these relationships. Poorer households and female farmers grew beans on soils with poorer soil fertility. Moreover, poorer households had a lower density of stakes, while stake density was strongly correlated with yield. Diammonium phosphate (DAP) fertiliser application led to a substantial increase in the average grain yield (0.66 t ha−1), but a large variability in responses implied that its use would be economically worthwhile for roughly half of the farmers. For the sake of targeting agricultural innovations to those households that are most likely to adopt, the Ubudehe household typology – a Rwandan government system of wealth categorisation – could be a useful and easily available tool to structure rural households within regions of Rwanda that are relatively uniform in agro-ecology

    Residues from black soldier fly (Hermetia illucens) larvae rearing influence the plant-associated soil microbiome in the short term

    Get PDF
    Open Access Journal; Published online: 26 Sep 2022The larvae of the black soldier fly (BSFL, Hermetia illucens) efficiently close resource cycles. Next to the nutrient-rich insect biomass used as animal feed, the residues from the process are promising plant fertilizers. Besides a high nutrient content, the residues contain a diverse microbial community and application to soil can potentially promote soil fertility and agricultural production through the introduction of beneficial microbes. This research assessed the application of the residues on plant-associated bacterial and fungal communities in the rhizosphere of a grass-clover mix in a 42-day greenhouse pot study. Potted soil was amended with BSFL residues (BR+) or conventional compost (CC+) produced by Rwandan waste management companies in parallel to residues and compost sterilized (BR-, CC-) by high-energy electron beam (HEEB) as abiotic controls. The fertilizers were applied at a rate of 150  kg N  ha−1. Soil bacterial and fungal communities in both fertilizer and soil were assessed by high-throughput sequencing of ribosomal markers at different times after fertilizer application. Additionally, indicators for soil fertility such as basal respiration, plant yield and soil physicochemical properties were analyzed. Results showed that the application of BSFL residues influenced the soil microbial communities, and especially fungi, stronger than CC fertilizers. These effects on the microbial community structure could partly be attributed to a potential introduction of microbes to the soil by BSFL residues (e.g., members of genus Bacillus) since untreated and sterilized BSFL residues promoted different microbial communities. With respect to the abiotic effects, we emphasize a potential driving role of particular classes of organic matter like fiber and chitin. Indeed, especially taxa associated with decomposition of organic matter (e.g., members of the fungal genus Mortierella) were promoted by the application of BSFL residues. Soil fertility with respect to plant yield (+17% increase compared to unamended control) and basal respiration (+16% increase compared to unamended control) tended to be improved with the addition of BSFL residues. Findings underline the versatile opportunities for soil fertility arising from the application of BSFL residues in plant production and point to further research on quantification of the described effects

    Expression and function of αβ1 integrins in pancretic beta (INS-1) cells

    Get PDF
    Integrin-extracellular matrix interactions are important determinants of beta cell behaviours. The β1 integrin is a well-known regulator of beta cell activities; however, little is known of its associated α subunits. In the present study, αβ1 integrin expression was examined in the rat insulinoma cell line (INS-1) to identify their role in beta cell survival and function. Seven α subunits associated with β1 integrin were identified, including α1-6 and αV. Among these heterodimers, α3β1 was most highly expressed. Common ligands for the α3β1 integrin, including fibronectin, laminin, collagen I and collagen IV were tested to identify the most suitable matrix for INS-1 cell proliferation and function. Cells exposed to collagen I and IV demonstrated significant increases in adhesion, spreading, cell viability, proliferation, and FAK phosphorylation when compared to cells cultured on fibronectin, laminin and controls. Integrin-dependent attachment also had a beneficial effect on beta cell function, increasing Pdx-1 and insulin gene and protein expression on collagens I and IV, in parallel with increased basal insulin release and enhanced insulin secretion upon high glucose challenge. Furthermore, functional blockade of α3β1 integrin decreased cell adhesion, spreading and viability on both collagens and reduced Pdx-1 and insulin expression, indicating that its interactions with collagen matrices are important for beta cell survival and function. These results demonstrate that specific αβ1 integrin-ECM interactions are critical regulators of INS-1 beta cell survival and function and will be important in designing optimal conditions for cell-based therapies for diabetes treatment

    Reducing the Activity and Secretion of Microbial Antioxidants Enhances the Immunogenicity of BCG

    Get PDF
    BACKGROUND:In early clinical studies, the live tuberculosis vaccine Mycobacterium bovis BCG exhibited 80% protective efficacy against pulmonary tuberculosis (TB). Although BCG still exhibits reliable protection against TB meningitis and miliary TB in early childhood it has become less reliable in protecting against pulmonary TB. During decades of in vitro cultivation BCG not only lost some genes due to deletions of regions of the chromosome but also underwent gene duplication and other mutations resulting in increased antioxidant production. METHODOLOGY/PRINCIPAL FINDINGS:To determine whether microbial antioxidants influence vaccine immunogenicity, we eliminated duplicated alleles encoding the oxidative stress sigma factor SigH in BCG Tice and reduced the activity and secretion of iron co-factored superoxide dismutase. We then used assays of gene expression and flow cytometry with intracellular cytokine staining to compare BCG-specific immune responses in mice after vaccination with BCG Tice or the modified BCG vaccine. Compared to BCG, the modified vaccine induced greater IL-12p40, RANTES, and IL-21 mRNA in the spleens of mice at three days post-immunization, more cytokine-producing CD8+ lymphocytes at the peak of the primary immune response, and more IL-2-producing CD4+ lymphocytes during the memory phase. The modified vaccine also induced stronger secondary CD4+ lymphocyte responses and greater clearance of challenge bacilli. CONCLUSIONS/SIGNIFICANCE:We conclude that antioxidants produced by BCG suppress host immune responses. These findings challenge the hypothesis that the failure of extensively cultivated BCG vaccines to prevent pulmonary tuberculosis is due to over-attenuation and suggest instead a new model in which BCG evolved to produce more immunity-suppressing antioxidants. By targeting these antioxidants it may be possible to restore BCG's ability to protect against pulmonary TB

    N2Africa Early Impact Survey Rwanda

    No full text
    corecore