5,219 research outputs found

    Update-Efficient Regenerating Codes with Minimum Per-Node Storage

    Full text link
    Regenerating codes provide an efficient way to recover data at failed nodes in distributed storage systems. It has been shown that regenerating codes can be designed to minimize the per-node storage (called MSR) or minimize the communication overhead for regeneration (called MBR). In this work, we propose a new encoding scheme for [n,d] error- correcting MSR codes that generalizes our earlier work on error-correcting regenerating codes. We show that by choosing a suitable diagonal matrix, any generator matrix of the [n,{\alpha}] Reed-Solomon (RS) code can be integrated into the encoding matrix. Hence, MSR codes with the least update complexity can be found. An efficient decoding scheme is also proposed that utilizes the [n,{\alpha}] RS code to perform data reconstruction. The proposed decoding scheme has better error correction capability and incurs the least number of node accesses when errors are present.Comment: Submitted to IEEE ISIT 201

    Optimising the directional sensitivity of LISA

    Get PDF
    It was shown in a previous work that the data combinations canceling laser frequency noise constitute a module - the module of syzygies. The cancellation of laser frequency noise is crucial for obtaining the requisite sensitivity for LISA. In this work we show how the sensitivity of LISA can be optimised for a monochromatic source - a compact binary - whose direction is known, by using appropriate data combinations in the module. A stationary source in the barycentric frame appears to move in the LISA frame and our strategy consists of "coherently tracking" the source by appropriately "switching" the data combinations so that they remain optimal at all times. Assuming that the polarisation of the source is not known, we average the signal over the polarisations. We find that the best statistic is the `network' statistic, in which case LISA can be construed of as two independent detectors. We compare our results with the Michelson combination, which has been used for obtaining the standard sensitivity curve for LISA, and with the observable obtained by optimally switching the three Michelson combinations. We find that for sources lying in the ecliptic plane the improvement in SNR increases from 34% at low frequencies to nearly 90% at around 20 mHz. Finally we present the signal-to-noise ratios for some known binaries in our galaxy. We also show that, if at low frequencies SNRs of both polarisations can be measured, the inclination angle of the plane of the orbit of the binary can be estimated.Comment: 16 pages, 8 figures, submitted to Phys Rev

    Demonstration of displacement-noise-free interferometry using bi-directional Mach–Zehnder interferometers

    Get PDF
    We have demonstrated displacement- and frequency-noise-free laser interferometry (DFI) by partially implementing a recently proposed optical configuration using bi-directional Mach–Zehnder interferometers (MZIs). This partial implementation, the minimum necessary to be called DFI, has confirmed the essential feature of DFI: the combination of two MZI signals can be carried out in a way that cancels the displacement noise of the mirrors and beam splitters while maintaining gravitational-wave signals. The attained maximum displacement noise suppression was 45 dB

    The experimental plan of displacement- and frequency-noise free laser interferometer

    Get PDF
    We present the partial demonstration of displacement- and laser-noise free interferometer (DFI) and the next experimental plan to examine the complete configuration. A part of the full implementation of DFI has been demonstrated to confirm the cancellation of beamsplitter displacements. The displacements were suppressed by about two orders of magnitude. The aim of the next experiment is to operate the system and to confirm the cancellation of all displacement noises, while the gravitational wave (GW) signals survive. The optical displacements will be simulated by electro-optic modulators (EOM). To simulate the GW contribution to laser lights, we will use multiple EOMs

    Superfluid-Insulator transition of ultracold atoms in an optical lattice in the presence of a synthetic magnetic field

    Get PDF
    We study the Mott insulator-superfluid transition of ultracold bosonic atoms in a two-dimensional square optical lattice in the presence of a synthetic magnetic field with p/q (p and q being co-prime integers) flux quanta passing through each lattice plaquette. We show that on approach to the transition from the Mott side, the momentum distribution of the bosons exhibits q precursor peaks within the first magnetic Brillouin zone. We also provide an effective theory for the transition and show that it involves q interacting boson fields. We construct, from a mean-field analysis of this effective theory, the superfluid ground states near the transition and compute, for q=2,3, both the gapped and the gapless collective modes of these states. We suggest experiments to test our theory.Comment: 4 pages, 4 figs; v

    Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    Get PDF
    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development

    Synthesis, Structure, Electrochemistry, and Spectral Characterization of Bis-Isatin Thiocarbohydrazone Metal Complexes and Their Antitumor Activity Against Ehrlich Ascites Carcinoma in Swiss Albino Mice

    Get PDF
    The synthesis, structure, electrochemistry, and biological studies of Co(II), Ni(II), Cu(II), and Zn(II) complexes of thiocarbohydrazone ligand are described. The ligand is synthesized starting from thiocarbohydrazide and isatin. It is evident from the IR data that in all the complexes, only one part of the ligand is coordinated to the metal ion resulting mononuclear complexes. The ligand coordinates essentially through the carbonyl oxygen of the isatin fragment, the nitrogen atom of the azomethine group, and sulfur atom after deprotonation to give five membered rings. H1 NMR spectrum of the ligand shows only one set of signals for the aromatic protons, while the NH of isatin and NH of hydrazone give rise to two different singlets in the 11–14 ppm range. The formulations, [Cu(L)Cl]·2H2O, [Cu(L)(CH3COO)]·2H2O, [Ni(L)Cl], [Ni(L)(CH3COO)], [Co(L2)], and [Zn(L2)]·2H2O are in accordance with elemental analyses, physical, and spectroscopic measurements. The complexes are soluble in organic solvents. Molar conductance values in DMF indicate the nonelectrolytic nature of the complexes. Copper complex displays quasireversible cyclic voltametric responses with Ep near −0.659 v and 0.504 v Vs Ag/AgCl at the scan rate of 0.1 V/s. Copper(II) complexes show a single line EPR signals. For the observed magnetic moment and electronic spectral data possible explanation has been discussed. From all the available data, the probable structures for the complexes have been proposed. The compounds synthesized in present study have shown promising cytotoxic activity when screened using the in vitro method and at the same time were shown to have good activity when tested using the Ehrlich ascites carcinoma (EAC) model. The antimicrobial screening showed that the cobalt complex possesses enhanced antimicrobial activity towards fungi
    corecore