8,288 research outputs found

    Addressing \mu-b_\mu and proton lifetime problems and active neutrino masses in a U(1)^\prime-extended supergravity model

    Full text link
    We present a locally supersymmetric extension of the minimal supersymmetric Standard Model (MSSM) based on the gauge group SU(3)C×SU(2)L×U(1)Y×U(1)SU(3)_C\times SU(2)_L\times U(1)_Y\times U(1)^\prime where, except for the supersymmetry breaking scale which is fixed to be 1011\sim 10^{11} GeV, we require that all non-Standard-Model parameters allowed by the {\it local} spacetime and gauge symmetries assume their natural values. The U(1)U(1)^\prime symmetry, which is spontaneously broken at the intermediate scale, serves to ({\it i}) explain the weak scale magnitudes of μ\mu and bμb_\mu terms, ({\it ii}) ensure that dimension-3 and dimension-4 baryon-number-violating superpotential operators are forbidden, solving the proton-lifetime problem, ({\it iii}) predict {\it bilinear lepton number violation} in the superpotential at just the right level to accommodate the observed mass and mixing pattern of active neutrinos (leading to a novel connection between the SUSY breaking scale and neutrino masses), while corresponding trilinear operators are strongly supppressed. The phenomenology is like that of the MSSM with bilinear R-parity violation, were the would-be lightest supersymmetric particle decays leptonically with a lifetime of 1012108\sim 10^{-12}-10^{-8} s. Theoretical consistency of our model requires the existence of multi-TeV, stable, colour-triplet, weak-isosinglet scalars or fermions, with either conventional or exotic electric charge which should be readily detectable if they are within the kinematic reach of a hadron collider. Null results of searches for heavy exotic isotopes implies that the re-heating temperature of our Universe must have been below their mass scale which, in turn, suggests that sphalerons play a key role for baryogensis. Finally, the dark matter cannot be the weakly interacting neutralino.Comment: 33 pages, 2 figures, Discussion on proton decay and radiative neutrino masses augmented, and references adde

    Journal Staff

    Get PDF
    The aluminum–zinc-vacancy (Al Zn −V Zn ) complex is identified as one of the dominant defects in Al-containing n -type ZnO after electron irradiation at room temperature with energies above 0.8 MeV. The complex is energetically favorable over the isolated V Zn , binding more than 90% of the stable V Zn ’s generated by the irradiation. It acts as a deep acceptor with the (0/− ) energy level located at approximately 1 eV above the valence band. Such a complex is concluded to be a defect of crucial and general importance that limits the n -type doping efficiency by complex formation with donors, thereby literally removing the donors, as well as by charge compensation

    Quantum theory of successive projective measurements

    Full text link
    We show that a quantum state may be represented as the sum of a joint probability and a complex quantum modification term. The joint probability and the modification term can both be observed in successive projective measurements. The complex modification term is a measure of measurement disturbance. A selective phase rotation is needed to obtain the imaginary part. This leads to a complex quasiprobability, the Kirkwood distribution. We show that the Kirkwood distribution contains full information about the state if the two observables are maximal and complementary. The Kirkwood distribution gives a new picture of state reduction. In a nonselective measurement, the modification term vanishes. A selective measurement leads to a quantum state as a nonnegative conditional probability. We demonstrate the special significance of the Schwinger basis.Comment: 6 page

    Synchronization and Coarsening (without SOC) in a Forest-Fire Model

    Full text link
    We study the long-time dynamics of a forest-fire model with deterministic tree growth and instantaneous burning of entire forests by stochastic lightning strikes. Asymptotically the system organizes into a coarsening self-similar mosaic of synchronized patches within which trees regrow and burn simultaneously. We show that the average patch length grows linearly with time as t-->oo. The number density of patches of length L, N(L,t), scales as ^{-2}M(L/), and within a mean-field rate equation description we find that this scaling function decays as e^{-1/x} for x-->0, and as e^{-x} for x-->oo. In one dimension, we develop an event-driven cluster algorithm to study the asymptotic behavior of large systems. Our numerical results are consistent with mean-field predictions for patch coarsening.Comment: 5 pages, 4 figures, 2-column revtex format. To be submitted to PR

    Anisotropic thermal expansion and magnetostriction of YNi2_2B2_2C single crystals

    Full text link
    We present results of anisotropic thermal expansion and low temperature magnetostriction measurements on YNi2_2B2_2C single crystals grown by high temperature flux and floating zone techniques. Quantum oscillations of magnetostriction were observed at low temperatures for HcH \| c starting at fields significantly below Hc2H_{c2} (H<0.7Hc2H < 0.7 H_{c2}). Large irreversible, longitudinal magnetostriction was seen in both, in-plane and along the c-axis, directions of the applied magnetic field in the intermediate superconducting state. Anisotropic uniaxial pressure dependencies of TcT_c were evaluated using results of zero field, thermal expansion measurements

    Classification of Possible Finite-Time Singularities by Functional Renormalization

    Full text link
    Starting from a representation of the early time evolution of a dynamical system in terms of the polynomial expression of some observable f (t) as a function of the time variable in some interval 0 < t < T, we investigate how to extrapolate/forecast in some optimal stability sense the future evolution of f(t) for time t>T. Using the functional renormalization of Yukalov and Gluzman, we offer a general classification of the possible regimes that can be defined based on the sole knowledge of the coefficients of a second-order polynomial representation of the dynamics. In particular, we investigate the conditions for the occurence of finite-time singularities from the structure of the time series, and quantify the critical time and the functional nature of the singularity when present. We also describe the regimes when a smooth extremum replaces the singularity and determine its position and amplitude. This extends previous works by (1) quantifying the stability of the functional renormalization method more accurately, (2) introducing new global constraints in terms of moments and (3) going beyond the ``mean-field'' approximation.Comment: Latex document of 18 pages + 7 ps figure
    corecore