1,386 research outputs found

    Anisotropy in the Cosmic Microwave Background at Degree Angular Scales: Python V Results

    Get PDF
    Observations of the microwave sky using the Python telescope in its fifth season of operation at the Amundsen-Scott South Pole Station in Antarctica are presented. The system consists of a 0.75 m off-axis telescope instrumented with a HEMT amplifier-based radiometer having continuum sensitivity from 37-45 GHz in two frequency bands. With a 0.91 deg x 1.02 deg beam the instrument fully sampled 598 deg^2 of sky, including fields measured during the previous four seasons of Python observations. Interpreting the observed fluctuations as anisotropy in the cosmic microwave background, we place constraints on the angular power spectrum of fluctuations in eight multipole bands up to l ~ 260. The observed spectrum is consistent with both the COBE experiment and previous Python results. There is no significant contamination from known foregrounds. The results show a discernible rise in the angular power spectrum from large (l ~ 40) to small (l ~ 200) angular scales. The shape of the observed power spectrum is not a simple linear rise but has a sharply increasing slope starting at l ~ 150.Comment: 5 page

    DASI First Results: A Measurement of the Cosmic Microwave Background Angular Power Spectrum

    Full text link
    We present measurements of anisotropy in the Cosmic Microwave Background (CMB) from the first season of observations with the Degree Angular Scale Interferometer (DASI). The instrument was deployed at the South Pole in the austral summer 1999--2000, and made observations throughout the following austral winter. We have measured the angular power spectrum of the CMB in the range 100<l<900 with high signal-to-noise. In this paper we review the formalism used in the analysis, in particular the use of constraint matrices to project out contaminants such as ground and point source signals, and to test for correlations with diffuse foreground templates. We find no evidence of foregrounds other than point sources in the data, and find a maximum likelihood temperature spectral index beta = -0.1 +/- 0.2 (1 sigma), consistent with CMB. We detect a first peak in the power spectrum at l approx 200, in agreement with previous experiments. In addition, we detect a peak in the power spectrum at l approx 550 and power of similar magnitude at l approx 800 which are consistent with the second and third harmonic peaks predicted by adiabatic inflationary cosmological models.Comment: 8 pages, 1 figure, minor changes in response to referee comment

    Molecular Dynamics Simulation Study of Nonconcatenated Ring Polymers in a Melt: I. Statics

    Full text link
    Molecular dynamics simulations were conducted to investigate the structural properties of melts of nonconcatenated ring polymers and compared to melts of linear polymers. The longest rings were composed of N=1600 monomers per chain which corresponds to roughly 57 entanglement lengths for comparable linear polymers. For the rings, the radius of gyration squared was found to scale as N to the 4/5 power for an intermediate regime and N to the 2/3 power for the larger rings indicating an overall conformation of a crumpled globule. However, almost all beads of the rings are "surface beads" interacting with beads of other rings, a result also in agreement with a primitive path analysis performed in the following paper (DOI: 10.1063/1.3587138). Details of the internal conformational properties of the ring and linear polymers as well as their packing are analyzed and compared to current theoretical models.Comment: 15 pages, 14 figure

    Fluid Interpretation of Cardassian Expansion

    Get PDF
    A fluid interpretation of Cardassian expansion is developed. Here, the Friedmann equation takes the form H2=g(ρM)H^2 = g(\rho_M) where ρM\rho_M contains only matter and radiation (no vacuum). The function g(\rhom) returns to the usual 8\pi\rhom/(3 m_{pl}^2) during the early history of the universe, but takes a different form that drives an accelerated expansion after a redshift z1z \sim 1. One possible interpretation of this function (and of the right hand side of Einstein's equations) is that it describes a fluid with total energy density \rho_{tot} = {3 m_{pl}^2 \over 8 \pi} g(\rhom) = \rhom + \rho_K containing not only matter density (mass times number density) but also interaction terms ρK\rho_K. These interaction terms give rise to an effective negative pressure which drives cosmological acceleration. These interactions may be due to interacting dark matter, e.g. with a fifth force between particles Frα1F \sim r^{\alpha -1}. Such interactions may be intrinsically four dimensional or may result from higher dimensional physics. A fully relativistic fluid model is developed here, with conservation of energy, momentum, and particle number. A modified Poisson's equation is derived. A study of fluctuations in the early universe is presented, although a fully relativistic treatment of the perturbations including gauge choice is as yet incomplete.Comment: 25 pages, 1 figure. Replaced with published version. Title changed in journa

    Bulk scalar field in brane-worlds with induced gravity inspired by the L(R){\cal L}(R) term

    Full text link
    We obtain the effective field equations in a brane-world scenario within the framework of a DGP model where the action on the brane is an arbitrary function of the Ricci scalar, L(R){\cal L}(R), and the bulk action includes a scalar field in the matter Lagrangian. We obtain the Friedmann equations and acceleration conditions in the presence of the bulk scalar field for the RnR^n term in four-dimensional gravity.Comment: 9 pages, to appear in JCA

    Chern-Simons Invariants of Torus Links

    Full text link
    We compute the vacuum expectation values of torus knot operators in Chern-Simons theory, and we obtain explicit formulae for all classical gauge groups and for arbitrary representations. We reproduce a known formula for the HOMFLY invariants of torus links and we obtain an analogous formula for Kauffman invariants. We also derive a formula for cable knots. We use our results to test a recently proposed conjecture that relates HOMFLY and Kauffman invariants.Comment: 20 pages, 5 figures; v2: minor changes, version submitted to AHP. The final publication is available at http://www.springerlink.com/content/a2614232873l76h6

    Crossing the Phantom Divide Line in a DGP-Inspired F(R,ϕ)F(R,\phi)-Gravity

    Full text link
    We study possible crossing of the phantom divide line in a DGP-inspired F(R,ϕ)F(R,\phi) braneworld scenario where scalar field and curvature quintessence are treated in a unified framework. With some specific form of F(R,ϕ)F(R,\phi) and by adopting a suitable ansatz, we show that there are appropriate regions of the parameters space which account for late-time acceleration and admit crossing of the phantom divide line.Comment: 23 Pages, 10 figs, Submitted to JCA

    Precision Primordial 4^4He Measurement with CMB Experiments

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) are two major pillars of cosmology. Standard BBN accurately predicts the primordial light element abundances (4^4He, D, 3^3He and 7^7Li), depending on one parameter, the baryon density. Light element observations are used as a baryometers. The CMB anisotropies also contain information about the content of the universe which allows an important consistency check on the Big Bang model. In addition CMB observations now have sufficient accuracy to not only determine the total baryon density, but also resolve its principal constituents, H and 4^4He. We present a global analysis of all recent CMB data, with special emphasis on the concordance with BBN theory and light element observations. We find ΩBh2=0.025+0.00190.0026\Omega_{B}h^{2}=0.025+0.0019-0.0026 and Yp=0.250+0.0100.014Y_{p}=0.250+0.010-0.014 (fraction of baryon mass as 4^4He) using CMB data alone, in agreement with 4^4He abundance observations. With this concordance established we show that the inclusion of BBN theory priors significantly reduces the volume of parameter space. In this case, we find ΩBh2=0.0244+0.001370.00284\Omega_{B}h^2=0.0244+0.00137-0.00284 and Yp=0.2493+0.00060.001Y_p = 0.2493+0.0006-0.001. We also find that the inclusion of deuterium abundance observations reduces the YpY_p and ΩBh2\Omega_{B}h^2 ranges by a factor of \sim 2. Further light element observations and CMB anisotropy experiments will refine this concordance and sharpen BBN and the CMB as tools for precision cosmology.Comment: 7 pages, 3 color figures made minor changes to bring inline with journal versio
    corecore