277 research outputs found

    Elevating crop disease resistance with cloned genes

    Get PDF
    Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO2 emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree

    Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing

    Get PDF
    Global yields of potato and tomato crops are reduced owing to potato late blight disease, which is caused by Phytophthora infestans. Although most commercial potato varieties are susceptible to blight, wild potato relatives are not and are therefore a potential source of Resistance to P. infestans (Rpi) genes. Resistance breeding has exploited Rpi genes from closely related tuber-bearing potato relatives, but is laborious and slow 1–3. Here we report that the wild, diploid non-tuber-bearing Solanum americanum harbors multiple Rpi genes. We combine R gene sequence capture (RenSeq4) with single-molecule real-time SMRT sequencing (SMRT RenSeq) to clone Rpi-amr3i . This technology should enable de novo assembly of complete nucleotide-binding, leucine-rich repeat receptor (NLR) genes, their regulatory elements and complex multi-NLR loci from uncharacterized germplasm. SMRT RenSEQ can be applied to rapidly clone multiple R genes for engineering pathogen-resistant crops

    The Reactome pathway Knowledgebase

    Get PDF
    The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently

    The Reactome pathway knowledgebase

    Get PDF
    Reactome (http://www.reactome.org) is a manually curated open-source open-data resource of human pathways and reactions. The current version 46 describes 7088 human proteins (34% of the predicted human proteome), participating in 6744 reactions based on data extracted from 15 107 research publications with PubMed links. The Reactome Web site and analysis tool set have been completely redesigned to increase speed, flexibility and user friendliness. The data model has been extended to support annotation of disease processes due to infectious agents and to mutation
    • …
    corecore