334 research outputs found

    Fine mapping of rice drought QTL and study on combined effect of QTL for their physiological parameters under moisture stress condition

    Get PDF
    The present investigation was undertaken to study the effect of different yield QTL (DTY2.2, DTY3.1 and DTY8.1) under drought and their physiological response to drought stress. Backcross Inbred Lines (BILs) of IR64 (CB-193 and CB-229) along with IR64, APO and the traditional rice variety Norungan were raised in green house condition under water stress and control to evaluate the effect of the QTL on grain yield. The BIL CB-193 recorded higher photosynthetic rate (22.051), transpiration rate (7.152) and Ci/Ca ratio (0.597) whereas the BIL CB-229 recorded high relative water content (80.76%). It was found that the combination of three QTL (CB-229) performed better than the susceptible parent and the line with two QTL (CB-193 Fine-mapping of two QTLs viz., qDTY2.2 and qDTY8.1, for grain yield (GY) were conducted using backcross derived lines. Composite interval mapping analyses resolved the originally identified qDTY2.2 region of 6.7 cM into a segment of 2.1 cM and two sub QTLs at region between RM23132 and RM1578 (75.75 cM- 77.66 cM), RM515 and RM1578 (75.11 cM-77.66 cM) were identified in qDTY8.1 region. However this study provides a unique opportunity to breeders to introgress such regions together as a unit into high-yielding drought-susceptible varieties through MAS

    Structural basis of the carbohydrate specificities of Jacalin: an X-ray and modeling study

    Get PDF
    The structures of the complexes of tetrameric jacalin with Gal, Me-α-GalNAc, Me-α-T-antigen, GalNAcβ1-3Gal-α-O-Me and Galα1-6Glc (mellibiose) show that the sugar-binding site of jacalin has three components: the primary site, secondary site A, and secondary site B. In these structures and in the two structures reported earlier, Gal or GalNAc occupy the primary site with the anomeric carbon pointing towards secondary site A. The α-substituents, when present, interact, primarily hydrophobically, with secondary site A which has variable geometry. O-H···π and C-H···π hydrogen bonds involving this site also exist. On the other hand, β-substitution leads to severe steric clashes. Therefore, in complexes involving β-linked disaccharides, the reducing sugar binds at the primary site with the non-reducing end located at secondary site B. The interactions at secondary site B are primarily through water bridges. Thus, the nature of the linkage determines the mode of the association of the sugar with jacalin. The interactions observed in the crystal structures and modeling based on them provide a satisfactory qualitative explanation of the available thermodynamic data on jacalin-carbohydrate interactions. They also lead to fresh insights into the nature of the binding of glycoproteins by jacalin

    Structural plasticity of peanut lectin: an X-ray analysis involving variation in pH, ligand binding and crystal structure

    Get PDF
    Until recently, it has only been possible to grow crystals of peanut lectin when complexed with sugar ligands. It is now shown that it is possible to grow peanut lectin crystals at acidic pH in the presence of oligopeptides corresponding to a loop in the lectin molecule. Crystals have also been prepared in the presence of these peptides as well as lactose. Low-pH crystal forms of the lectin-lactose complex similar to those obtained at neutral pH have also been grown. Thus, crystals of peanut lectin grown under different environmental conditions, at two pH values with and without sugar bound to the lectin, are now available. They have been used to explore the plasticity and hydration of the molecule. A detailed comparison between different structures shows that the lectin molecule is sturdy and that the effect of changes in pH, ligand binding and environment on it is small. The region involving the curved front β-sheet and the loops around the second hydrophobic core is comparatively rigid. The back β-sheet involved in quaternary association, which exhibits considerable variability, is substantially flexible, as is the sugar-binding region. The numbers of invariant water molecules in the hydration shell are small and they are mainly involved in metal coordination or in stabilizing unusual structural features. Small consistent movements occur in the combining site upon sugar binding, although the site is essentially preformed

    Crystal structure of the jacalin-T-antigen complex and a comparative study of lectin-T-antigen complexes

    Get PDF
    Thomsen-Friedenreich antigen (Galβ1-3GalNAc), generally known as T-antigen, is expressed in more than 85% of human carcinomas. Therefore, proteins which specifically bind T-antigen have potential diagnostic value. Jacalin, a lectin from jack fruit (Artocarpus integrifolia) seeds, is a tetramer of molecular mass 66 kDa. It is one of the very few proteins which are known to bind T-antigen. The crystal structure of the jacalin-T-antigen complex has been determined at 1.62 Å resolution. The interactions of the disaccharide at the binding site are predominantly through the GalNAc moiety, with Gal interacting only through water molecules. They include a hydrogen bond between the anomeric oxygen of GalNAc and the π electrons of an aromatic side-chain. Several intermolecular interactions involving the bound carbohydrate contribute to the stability of the crystal structure. The present structure, along with that of the Me-α-Gal complex, provides a reasonable qualitative explanation for the known affinities of jacalin to different carbohydrate ligands and a plausible model of the binding of the lectin to T-antigen O-linked to seryl or threonyl residues. Including the present one, the structures of five lectin-T-antigen complexes are available. GalNAc occupies the primary binding site in three of them, while Gal occupies the site in two. The choice appears to be related to the ability of the lectin to bind sialylated sugars. In either case, most of the lectin-disaccharide interactions are at the primary binding site. The conformation of T-antigen in the five complexes is nearly the same

    Targeted Oral Delivery of Paclitaxel Using Colostrum-Derived Exosomes

    Get PDF
    Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small-cell lung cancer (NSCLC) is the most common type accounting for 84% of all lung cancers. Paclitaxel (PAC) is a widely used drug in the treatment of a broad spectrum of human cancers, including lung. While efficacious, PAC generally is not well tolerated and its limitations include low aqueous solubility, and significant toxicity. To overcome the dose-related toxicity of solvent-based PAC, we utilized bovine colostrum-derived exosomes as a delivery vehicle for PAC for the treatment of lung cancer. Colostrum provided higher yield of exosomes and could be loaded with higher amount of PAC compared to mature milk. Exosomal formulation of PAC (ExoPAC) showed higher antiproliferative activity and inhibition of colony formation against A549 cells compared with PAC alone, and also showed antiproliferative activity against a drug-resistant variant of A549. To further enhance its efficacy, exosomes were attached with a tumor-targeting ligand, folic acid (FA). FA-ExoPAC given orally showed significant inhibition (\u3e50%) of subcutaneous tumor xenograft while similar doses of PAC showed insignificant inhibition. In the orthotopic lung cancer model, oral dosing of FA-ExoPAC achieved greater efficacy (55% growth inhibition) than traditional i.v. PAC (24–32% growth inhibition) and similar efficacy as i.v. Abraxane (59% growth inhibition). The FA-ExoPAC given i.v. exceeded the therapeutic efficacy of Abraxane (76% growth inhibition). Finally, wild-type animals treated with p.o. ExoPAC did not show gross, systemic or immunotoxicity. Solvent-based PAC caused immunotoxicity which was either reduced or completely mitigated by its exosomal formulations. These studies show that a tumor-targeted oral formulation of PAC (FA-ExoPAC) significantly improved the overall efficacy and safety profile while providing a user-friendly, cost-effective alternative to bolus i.v. PAC and i.v. Abraxane

    Evaluation of INSeq To Identify Genes Essential for

    Get PDF
    The reciprocal interaction between rhizosphere bacteria and their plant hosts results in a complex battery of genetic and physiological responses. In this study, we used insertion sequencing (INSeq) to reveal the genetic determinants responsible for the fitness of Pseudomonas aeruginosa PGPR2 during root colonization. We generated a random transposon mutant library of Pseudomonas aeruginosa PGPR2 comprising 39,500 unique insertions and identified genes required for growth in culture and on corn roots. A total of 108 genes were identified as contributing to the fitness of strain PGPR2 on roots. The importance in root colonization of four genes identified in the INSeq screen was verified by constructing deletion mutants in the genes and testing them for the ability to colonize corn roots singly or in competition with the wild type. All four mutants were affected in corn root colonization, displaying 5- to 100-fold reductions in populations in single inoculations, and all were outcompeted by the wild type by almost 100-fold after seven days on corn roots in mixed inoculations of the wild type and mutant. The genes identified in the screen had homology to genes involved in amino acid catabolism, stress adaptation, detoxification, signal transduction, and transport. INSeq technology proved a successful tool to identify fitness factors in P aeruginosa PGPR2 for root colonization
    corecore