22 research outputs found

    Variability of mackerel fish catch and remotely-sensed biophysical controls in the eastern pemba channel

    Get PDF
    Advances in satellite remote sensing of environmental perturbations have become important in understanding variations of ocean productivity and small pelagic fish catches. This marine resource is vital for coastal populations dependent on artisanal fishing for their income and food security, such as in coastal East Africa. In this region, the eastern Pemba Channel (Tanzania) represents a hotspot area, for a variety of marine species including small pelagics and coral reef associated species. This study examines the links between mackerel fish catch, one of the important small pelagic fish for direct consumption in the region, and changes in environmental oceanographic parameters over the period 2012–2018. The fisheries catch data is a rare local dataset, consisting of daily mackerel landings (from 2012 onwards) and supplemented by qualitative information on the mackerel fishery obtained through interviews with local stakeholders. The physical factors influencing phytoplankton biomass, and in turn, mackerel fisheries yield is investigated, using remotely-sensed chlorophyll-a (Chl-a) and Sea Surface Temperature (SST), together with Mixed Layer Depth (MLD) data from the high-resolution ocean model NEMO. We show that seasonal variations in mackerel landings are positively (negatively) correlated with Chl-a (SST) with a 1-month time lag (i.e., biophysical factors change first, mackerel stocks follow one month later). On the eastern side of the Pemba Channel, cooler SST and higher Chl-a are observed during the Southeast monsoon accompanied by increased mackerel landings, suggestive of enhanced productivity. Interannually, these relationships remain valid both for monthly and annual means, which confirms the close link between the variations of mackerel and biophysical conditions. Analysis of the Chl-a and MLD anomalies, relative to the mean, reveals that the phytoplankton blooms observed on the eastern side of the Pemba Channel, during the Southeast monsoon, are likely due to the deepening of the mixed layer, which tends to entrain cold and nutrient rich waters from greater depths to the surface. We conclude that upper ocean mixing contributes to the observed enhanced productivity along with other environmental factors. Additionally, we show how our results can be applied in the management of the mackerel resource in the Pemba Channel

    Key climate change stressors of marine ecosystems along the path of the east african coastal current

    Get PDF
    For the countries bordering the tropical Western Indian Ocean (TWIO), living marine resources are vital for food security. However, this region has largely escaped the attention of studies investigating potential impacts of future climate change on the marine environment. Understanding how marine ecosystems in coastal East Africa may respond to various climatic stressors is vital for the development of conservation and other ocean management policies that can help to adapt to climate change impacts on natural and associated human systems. Here, we use a high-resolution (1/4°) ocean model, run under a high emission scenario (RCP 8.5) until the end of the 21st century, to identify key regionally important climate change stressors over the East African Coastal Current (EACC) that flows along the coasts of Kenya and Tanzania. We also discuss these stressors in the context of projections from lower resolution CMIP5 models. Our results indicate that the main drivers of dynamics and the associated ecosystem response in the TWIO are different between the two monsoon seasons. Our high resolution model projects weakening of the Northeast monsoon (December–February) winds and slight strengthening of the Southeast monsoon (May–September) winds throughout the course of the 21st century, consistent with CMIP5 models. The projected shallower mixed layers and weaker upwelling during the Northeast Monsoon considerably reduce the availability of surface nutrients and primary production. Meanwhile, primary production during the Southeast monsoon is projected to be relatively stable until the end of the century. In parallel, a widespread warming of up to 5 °C is projected year-round with extreme events such as marine heatwaves becoming more intense and prolonged, with the first year-long event projected to occur as early as the 2030s. This extreme warming will have significant consequences for both marine ecosystems and the coastal populations dependent on these marine resources. These region-specific stressors highlight the importance of dynamic ocean features such as the upwelling systems associated with key ocean currents. This indicates the need to develop and implement a regional system that monitors the anomalous behaviour of such regionally important features. Additionally, this study draws attention to the importance of investment in decadal prediction methods, including high resolution modelling, that can provide information at time and space scales that are more directly relevant to regional management and policy making

    Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via the DOI in this recordData and materials availability: All observational and model datasets used here are publicly available or available on request.Climate variability in the tropical Pacific affects global climate on a wide range of time scales. On interannual time scales, the tropical Pacific is home to the El Niño–Southern Oscillation (ENSO). Decadal variations and changes in the tropical Pacific, referred to here collectively as tropical Pacific decadal variability (TPDV), also profoundly affect the climate system. Here, we use TPDV to refer to any form of decadal climate variability or change that occurs in the atmosphere, the ocean, and over land within the tropical Pacific. “Decadal,” which we use in a broad sense to encompass multiyear through multidecadal time scales, includes variability about the mean state on decadal time scales, externally forced mean-state changes that unfold on decadal time scales, and decadal variations in the behavior of higher-frequency modes like ENSO

    Reviews and syntheses: Abrupt ocean biogeochemical change under human-made climatic forcing – warming, acidification, and deoxygenation

    Get PDF
    Abrupt changes in ocean biogeochemical variables occur as a result of human-induced climate forcing as well as those which are more gradual and occur over longer timescales. These abrupt changes have not yet been identified and quantified to the same extent as the more gradual ones. We review and synthesise abrupt changes in ocean biogeochemistry under human-induced climatic forcing. We specifically address the ocean carbon and oxygen cycles because the related processes of acidification and deoxygenation provide important ecosystem hazards. Since biogeochemical cycles depend also on the physical environment, we also describe the relevant changes in warming, circulation, and sea ice. We include an overview of the reversibility or irreversibility of abrupt marine biogeochemical changes. Important implications of abrupt biogeochemical changes for ecosystems are also discussed. We conclude that there is evidence for increasing occurrence and extent of abrupt changes in ocean biogeochemistry as a consequence of rising greenhouse gas emissions

    Shelf-Break Upwelling and Productivity Over the North Kenya Banks: The Importance of Large-Scale Ocean Dynamics

    No full text
    The North Kenya Banks (NKBs) have recently emerged as a new frontier for food security and could become an economically important fishery for Kenya with improved resources providing better accessibility. Little research has been done on the mechanisms supporting high fish productivity over the NKBs with information on annual and interannual environmental variability lacking. Here we use a high-resolution, global, biogeochemical ocean model with remote sensing observations to demonstrate that the ocean circulation exerts an important control on the productivity over the NKBs. During the Northeast Monsoon, which occurs from December to February, upwelling occurs along the Kenyan coast, which is topographically enhanced over the NKBs. Additionally, enhanced upwelling events, associated with widespread cool temperatures, elevated chlorophyll, nutrients, primary production, and phytoplankton biomass, can occur over this region. Eight such modeled events, characterized by primary production exceeding 1.3 g C/m(-2)/day, were found to occur during January or February from 1993-2015. Even though the upwelling is always rooted to the NKBs, the position, spatial extent, and intensity of the upwelling exhibit considerable interannual variability. The confluence zone between the Somali Current and East African Coastal Current (referred to as the Somali-Zanzibar Confluence Zone) forms during the Northeast Monsoon and is highly variable. We present evidence that when the Somali-Zanzibar Confluence Zone is positioned further south, it acts to enhance shelf-edge upwelling and productivity over the NKBs. These findings provide the first indication of the environmental controls that need to be considered when developing plans for the sustainable exploitation of the NKB fishery. Plain Language Summary The North Kenya Banks (NKBs) have recently emerged as a region capable of sustaining a rich fishery, which would boost Kenya's economy. Little research has been conducted on the environmental controls that affect these fisheries and whether there is annual variability over multiple years. Here an ocean model is used, with satellite remote sensing data, to investigate how the ocean influences this region. Specifically, the convergence of two currents during the Northeast Monsoon, the Somali Current and the East African Coastal Current, which meet near the NKBs and flow away from the coast. This induces the upwelling of cold, nutrient-rich waters, which are brought up from depth to the surface, resulting in the NKBs being a highly productive area. The confluence of these two currents forms from December to February and its position along the Kenyan coast varies from year-to-year. This leads to considerable variability in the intensity, position, and spatial extent of productive waters. Productivity is enhanced over the NKBs when the confluence of the two currents is generally positioned further south. These findings provide the first indication of the environmental controls that need to be taken into account when developing plans for sustainable exploitation of the fisheries resources

    Interannual monsoon wind variability as a key driver of East African small pelagic fisheries

    No full text
    Small pelagic fisheries provide food security, livelihood support and economic stability for East African coastal communities—a region of least developed countries. Using remotely- sensed and field observations together with modelling, we address the biophysical drivers of this important resource. We show that annual variations of fisheries yield parallel those of chlorophyll-a (an index of phytoplankton biomass). While enhanced phytoplankton biomass during the Northeast monsoon is triggered by wind-driven upwelling, during the Southeast monsoon, it is driven by two current induced mechanisms: coastal “dynamic uplift” upwelling; and westward advection of nutrients. This biological response to the Southeast monsoon is greater than that to the Northeast monsoon. For years unaffected by strong El-Niño/La-Niña events, the Southeast monsoon wind strength over the south tropical Indian Ocean is the main driver of year-to-year variability. This has important implications for the predictability of fisheries yield, its response to climate change, policy and resource management. © 2020, The Author(s)
    corecore