249 research outputs found

    Solar wind minor ions: Recent observations

    Get PDF
    Systematic studies show that the minor ions generally travel with a common bulk speed and have temperatures roughly proportional to their masses. It was determined that (3)He(++) content varies greatly; (3)He(++)/(4)He(++) ranges from as high as 10(-12) values to below 2 x 10(-4). In some solar wind flows which can be related to energetic coronal events, the minor ions are found in unusual ionization states containing Fe(16+) as a prominent ion, showing that the states were formed at unusually high temperatures. Unexpectedly, in a few flows substantial quantities of (4)He(+) were detected, sometimes with ions identifiable as O(2+) and O(3+). Surprisingly, in some of these examples the ionization state is mixed showing that part of the plasma escaped the corona without attaining the usual million-degree temperatures while other parts were heated more nearly in the normal manner. Additionally, detailed studies of the minor ions increased our understanding of the coronal expansion. For example, such studies contributed to identifying near equatorial coronal streamers as the source of solar wind flows between high speed streams

    Spacecraft observations of the solar wind composition

    Get PDF
    Solar wind composition studies by means of plasma analyzers carried on various spacecraft are reviewed. The average ratio of helium to hydrogen over the solar cycle is close to 0.045; values as low as 0.0025 and as high as 0.25 have been observed. High values have been observed following solar flares and interplanetary shock waves when the flare gas driving the shock arrives at the spacecraft. Ions of He-3(+2), O-16(+6), and O-16(+7) have been observed with Vela 3 electrostatic analyzers. Further measurements with Vela 5 analyzers have shown the presence of N-14(+6), Si-28(+7) to Si-28(+9) and Fe-56(+7) to Fe-56(+12) ions. The relative abundance of oxygen, silicon, and iron in the solar wind of July 6, 1969, was 1.00, 0.21, and 0.17, which is very similar to reported values for the corona. The ratio of helium to oxygen is variable; the average value of He/O is close to 100, but values between 30 and 400 have been observed

    Spatial variation of iron abundance in the high speed solar wind, 1972 to 1976

    Get PDF
    The Fe/H ratios in the peaks of high speed streams (HSS) during the decline of Solar Cycle 20 and the following minimum (October 1972-December 1976) were analyzed. The response of the 50-200 keV ion channel of the APL/JHU energetic particle experiment (EPE) on IMP-7 and 8 to solar wind iron ions at high solar wind speeds and Fe measurements were compared with solar wind H and He parameters from the Los Alamos National Laboratory (LANL) instruments on the same spacecraft. In general, the Fe distribution parameters (bulk velocity, flow direction, temperature) are found to be similar to the LANL He parameters. Although the average Fe/H ratio in many steady HSS peaks agrees within observational uncertainties with the nominal coronal ratio of 4.7 x 10(-5), abundance variations of a factor of up to 6 are obtained across a given coronal-hole associated HSS. Over the period 1973-1976, a steady decrease in the average quiet-time Fe/H ratio by a factor of about 4 is measured on both IMP-7 and 8

    Solar wind iron abundance variations at solar wind speeds up to 600 km s sup -1, 1972 to 1976

    Get PDF
    The Fe/H ratios in the peaks of high speed streams (HSS) were analyzed during the decline of Solar Cycle 20 and the following minimum (October 1972 to December 1976). The response of the 50 to 200 keV ion channel of the APL/JHU energetic particle experiment (EPE) on IMP-7 and 8 was utilized to solar wind iron ions at high solar wind speeds (V or = 600 km/sec). Fe measurements with solar wind H and He parameters were compared from the Los Alamos National Laboratory (LANL) instruments on the same spacecraft. In general, the Fe distribution parameters (bulk velocity, flow direction, temperature) are found to be similar to the LANL He parameters. Although the average Fe/H ration in many steady HSS peaks agrees within observational uncertainties with the nominal coronal ratio of 4.7 x 0.00001, abundance variations of a factor of up to 6 are obtained across a given coronal-hole associated HSS

    Multiple spacecraft observations of interplanetary shocks: Characteristics of the upstream ULF turbulence

    Get PDF
    All interplanetary shocks observed by ISEE-3 and either ISEE-1 or ISEE-2 or both in 1978 and 1979 are examined for evidence of upstream waves. In order to characterize the properties of these shocks it is necessary to determine accurate shock normals. An overdetermined set of equations were inverted to obtain shock normals, velocities and error estimates for all these shocks. Tests of the method indicate it is quite reliable. Using these normals the Mach number and angle were between the interplanetary magnetic field and the shock normal for each shock. The upstream waves were separated into two classes: whistler mode precursors which occur at low Mach numbers and upstream turbulence whose amplitude at Mach numbers greater than 1.5 is controlled by the angle of the field to the shock normal. The former waves are right hand circularly polarized and quite monochromatic. The latter waves are more linearly polarized and have a broadband featureless spectrum

    Electron heating at interplanetary shocks

    Get PDF
    Data for 41 forward interplanetary shocks show that the ratio of downstream to upstream electron temperatures. T sub e (d/u) is variable in the range between 1.0 (isothermal) and 3.0. On average, (T sub e (d/u) = 1.5 with a standard deviation, sigma e = 0.5. This ratio is less than the average ratio of proton temperatures across the same shocks, (T sub p (d/u)) = 3.3 with sigma p = 2.5 as well as the average ratio of electron temperatures across the Earth's bow shock. Individual samples of T sub e (d/u) and T sub p (d/u) appear to be weakly correlated with the number density ratio. However the amounts of electron and proton heating are well correlated with each other as well as with the bulk velocity difference across each shock. The stronger shocks appear to heat the protons more efficiently than they heat the electrons

    Interaction of the plasma tail of comet Bradfield 1979L on 1980 February 6 with a possibly flare-generated solar-wind disturbance

    Get PDF
    Solar wind plasma data from the ISEE-3 and Helios 2 spacecraft were examined to explain a uniquely rapid 10 deg turning of the plasma tail of comet Bradfield 1979L on 1980 February 6. It was suggested that the tail position angle change occurred in response to a solar wind velocity shear across which the polar component changed by approx. 50 km s-1. The present activity was caused by noncorotating, disturbed plasma flows probably associated with an Importance 1B solar flare

    Plasma properties of driver gas following interplanetary shocks observed by ISEE-3

    Get PDF
    Plasma fluid parameters calculated from solar wind and magnetic field data obtained on ISEE 3 were studied. The characteristic properties of driver gas following interplanetary shocks was determined. Of 54 shocks observed from August 1978 to February 1980, nine contained a well defined driver gas that was clearly identifiable by a discontinuous decrease in the average proton temperature across a tangential discontinuity. While helium enhancements were present in all of nine of these events, only about half of them contained simultaneous changes in the two quantities. Often the He/H ratio changed over a period of minutes. Simultaneous with the drop in proton temperature the helium and electron temperature decreased abruptly. In some cases the proton temperature depression was accompanied by a moderate increase in magnetic field magnitude with an unusually low variance and by an increase in the ratio of parallel to perpendicular temperature. The drive gas usually displayed a bidirectional flow of suprathermal solar wind electrons at higher energies

    Simultaneous measurements of magnetotail dynamics by IMP spacecraft

    Get PDF
    Changes in tail energy density during substorms in the magnetotail are given. In addition to plasma sheet thinnings seen prior to substorm onsets, a gradual decrease in plasma beta was detected in the deep tail which precedes onset and the more prominent plasma disappearance that typically accompanies it. The frequency of thinnings and the regions over which they occurred indicate that drastic changes in plasma sheet thickness are common features of substorms which occur at all locations across the tail
    • …
    corecore