963 research outputs found

    Novel continuum modeling of crystal surface evolution

    Full text link
    We propose a novel approach to continuum modeling of the dynamics of crystal surfaces. Our model follows the evolution of an ensemble of step configurations, which are consistent with the macroscopic surface profile. Contrary to the usual approach where the continuum limit is achieved when typical surface features consist of many steps, our continuum limit is approached when the number of step configurations of the ensemble is very large. The model can handle singular surface structures such as corners and facets. It has a clear computational advantage over discrete models.Comment: 4 pages, 3 postscript figure

    Low-Energy Electron Microscopy Studies of Interlayer Mass Transport Kinetics on TiN(111)

    Full text link
    In situ low-energy electron microscopy was used to study interlayer mass transport kinetics during annealing of three-dimensional (3D) TiN(111) mounds, consisting of stacked 2D islands, at temperatures T between 1550 and 1700 K. At each T, the islands decay at a constant rate, irrespective of their initial position in the mounds, indicating that mass is not conserved locally. From temperature-dependent island decay rates, we obtain an activation energy of 2.8+/-0.3 eV. This is consistent with the detachment-limited decay of 2D TiN islands on atomically-flat TiN(111) terraces [Phys. Rev. Lett. 89 (2002) 176102], but significantly smaller than the value, 4.5+/-0.2 eV, obtained for bulk-diffusion-limited spiral step growth [Nature 429, 49 (2004)]. We model the process based upon step flow, while accounting for step-step interactions, step permeability, and bulk mass transport. The results show that TiN(111) steps are highly permeable and exhibit strong repulsive temperature-dependent step-step interactions that vary between 0.003 and 0.076 eV-nm. The rate-limiting process controlling TiN(111) mound decay is surface, rather than bulk, diffusion in the detachment-limited regime.Comment: 26 pages, 5 figure

    Decay of one dimensional surface modulations

    Full text link
    The relaxation process of one dimensional surface modulations is re-examined. Surface evolution is described in terms of a standard step flow model. Numerical evidence that the surface slope, D(x,t), obeys the scaling ansatz D(x,t)=alpha(t)F(x) is provided. We use the scaling ansatz to transform the discrete step model into a continuum model for surface dynamics. The model consists of differential equations for the functions alpha(t) and F(x). The solutions of these equations agree with simulation results of the discrete step model. We identify two types of possible scaling solutions. Solutions of the first type have facets at the extremum points, while in solutions of the second type the facets are replaced by cusps. Interactions between steps of opposite signs determine whether a system is of the first or second type. Finally, we relate our model to an actual experiment and find good agreement between a measured AFM snapshot and a solution of our continuum model.Comment: 18 pages, 6 figures in 9 eps file

    Origin Gaps and the Eternal Sunshine of the Second-Order Pendulum

    Full text link
    The rich experiences of an intentional, goal-oriented life emerge, in an unpredictable fashion, from the basic laws of physics. Here I argue that this unpredictability is no mirage: there are true gaps between life and non-life, mind and mindlessness, and even between functional societies and groups of Hobbesian individuals. These gaps, I suggest, emerge from the mathematics of self-reference, and the logical barriers to prediction that self-referring systems present. Still, a mathematical truth does not imply a physical one: the universe need not have made self-reference possible. It did, and the question then is how. In the second half of this essay, I show how a basic move in physics, known as renormalization, transforms the "forgetful" second-order equations of fundamental physics into a rich, self-referential world that makes possible the major transitions we care so much about. While the universe runs in assembly code, the coarse-grained version runs in LISP, and it is from that the world of aim and intention grows.Comment: FQXI Prize Essay 2017. 18 pages, including afterword on Ostrogradsky's Theorem and an exchange with John Bova, Dresden Craig, and Paul Livingsto

    On computational irreducibility and the predictability of complex physical systems

    Full text link
    Using elementary cellular automata (CA) as an example, we show how to coarse-grain CA in all classes of Wolfram's classification. We find that computationally irreducible (CIR) physical processes can be predictable and even computationally reducible at a coarse-grained level of description. The resulting coarse-grained CA which we construct emulate the large-scale behavior of the original systems without accounting for small-scale details. At least one of the CA that can be coarse-grained is irreducible and known to be a universal Turing machine.Comment: 4 pages, 2 figures, to be published in PR

    The profile of a decaying crystalline cone

    Full text link
    The decay of a crystalline cone below the roughening transition is studied. We consider local mass transport through surface diffusion, focusing on the two cases of diffusion limited and attachment-detachment limited step kinetics. In both cases, we describe the decay kinetics in terms of step flow models. Numerical simulations of the models indicate that in the attachment-detachment limited case the system undergoes a step bunching instability if the repulsive interactions between steps are weak. Such an instability does not occur in the diffusion limited case. In stable cases the height profile, h(r,t), is flat at radii r<R(t)\sim t^{1/4}. Outside this flat region the height profile obeys the scaling scenario \partial h/\partial r = {\cal F}(r t^{-1/4}). A scaling ansatz for the time-dependent profile of the cone yields analytical values for the scaling exponents and a differential equation for the scaling function. In the long time limit this equation provides an exact description of the discrete step dynamics. It admits a family of solutions and the mechanism responsible for the selection of a unique scaling function is discussed in detail. Finally we generalize the model and consider permeable steps by allowing direct adatom hops between neighboring terraces. We argue that step permeability does not change the scaling behavior of the system, and its only effect is a renormalization of some of the parameters.Comment: 25 pages, 18 postscript figure

    Coarse-graining of cellular automata, emergence, and the predictability of complex systems

    Full text link
    We study the predictability of emergent phenomena in complex systems. Using nearest neighbor, one-dimensional Cellular Automata (CA) as an example, we show how to construct local coarse-grained descriptions of CA in all classes of Wolfram's classification. The resulting coarse-grained CA that we construct are capable of emulating the large-scale behavior of the original systems without accounting for small-scale details. Several CA that can be coarse-grained by this construction are known to be universal Turing machines; they can emulate any CA or other computing devices and are therefore undecidable. We thus show that because in practice one only seeks coarse-grained information, complex physical systems can be predictable and even decidable at some level of description. The renormalization group flows that we construct induce a hierarchy of CA rules. This hierarchy agrees well with apparent rule complexity and is therefore a good candidate for a complexity measure and a classification method. Finally we argue that the large scale dynamics of CA can be very simple, at least when measured by the Kolmogorov complexity of the large scale update rule, and moreover exhibits a novel scaling law. We show that because of this large-scale simplicity, the probability of finding a coarse-grained description of CA approaches unity as one goes to increasingly coarser scales. We interpret this large scale simplicity as a pattern formation mechanism in which large scale patterns are forced upon the system by the simplicity of the rules that govern the large scale dynamics.Comment: 18 pages, 9 figure

    Profile scaling in decay of nanostructures

    Full text link
    The flattening of a crystal cone below its roughening transition is studied by means of a step flow model. Numerical and analytical analyses show that the height profile, h(r,t), obeys the scaling scenario dh/dr = F(r t^{-1/4}). The scaling function is flat at radii r<R(t) \sim t^{1/4}. We find a one parameter family of solutions for the scaling function, and propose a selection criterion for the unique solution the system reaches.Comment: 4 pages, RevTex, 3 eps figure

    Slow fluctuations in enhanced Raman scattering and surface roughness relaxation

    Full text link
    We propose an explanation for the recently measured slow fluctuations and ``blinking'' in the surface enhanced Raman scattering (SERS) spectrum of single molecules adsorbed on a silver colloidal particle. We suggest that these fluctuations may be related to the dynamic relaxation of the surface roughness on the nanometer scale and show that there are two classes of roughness with qualitatively different dynamics. The predictions agree with measurements of surface roughness relaxation. Using a theoretical model for the kinetics of surface roughness relaxation in the presence of charges and optical electrical fields, we predict that the high-frequency electromagnetic field increases both the effective surface tension and the surface diffusion constant and thus accelerates the surface smoothing kinetics and time scale of the Raman fluctuations in manner that is linear with the laser power intensity, while the addition of salt retards the surface relaxation kinetics and increases the time scale of the fluctuations. These predictions are in qualitative agreement with the Raman experiments

    Dynamics of surface steps

    Full text link
    In the framework of SOS models, the dynamics of isolated and pairs of surface steps of monoatomic height is studied, for step--edge diffusion and for evaporation kinetics, using Monte Carlo techniques. In particular, various interesting crossover phenomena are identified. Simulational results are compared, especially, to those of continuum theories and random walk descriptions.Comment: 13 pages in elsart style, 4 eps figures, submitted to Physica
    • …
    corecore