755 research outputs found
A comparison of thermospheric winds and temperatures from Fabry-Perot Interferometer and EISCAT Radar measurements with models
Exotic radiation from a photonic crystal excited by an ultra-relativistic electron beam
We report the observation of an exotic radiation (unconventional
Smith-Purcell radiation) from a one-dimensional photonic crystal. The physical
origin of the exotic radiation is direct excitation of the photonic bands by an
ultra-relativistic electron beam. The spectrum of the exotic radiation follows
photonic bands of a certain parity, in striking contrast to the conventional
Smith-Purcell radiation, which shows solely a linear dispersion. Key
ingredients for the observation are the facts that the electron beam is in an
ultra-relativistic region and that the photonic crystal is finite. The origin
of the radiation was identified by comparison of experimental and theoretical
results.Comment: 4 pages, 5 figure
Effect of Dynamical SU(2) Gluons to the Gap Equation of Nambu--Jona-Lasinio Model in Constant Background Magnetic Field
In order to estimate the effect of dynamical gluons to chiral condensate, the
gap equation of SU(2) gauged Nambu--Jona-Lasinio model, under a constant
background magnetic field, is investigated up to the two-loop order in 2+1 and
3+1 dimensions. We set up a general formulation allowing both cases of electric
as well as magnetic background field. We rely on the proper time method to
maintain gauge invariance. In 3+1 dimensions chiral symmetry breaking
(SB) is enhanced by gluons even in zero background magnetic field and
becomes much striking as the background field grows larger. In 2+1 dimensions
gluons also enhance SB but whose dependence on the background field is
not simple: dynamical mass is not a monotone function of background field for a
fixed four-fermi coupling.Comment: 20 pages, 5 figure
Stress in frictionless granular material: Adaptive Network Simulations
We present a minimalistic approach to simulations of force transmission
through granular systems. We start from a configuration containing cohesive
(tensile) contact forces and use an adaptive procedure to find the stable
configuration with no tensile contact forces. The procedure works by
sequentially removing and adding individual contacts between adjacent beads,
while the bead positions are not modified. In a series of two-dimensional
realizations, the resulting force networks are shown to satisfy a linear
constraint among the three components of average stress, as anticipated by
recent theories. The coefficients in the linear constraint remain nearly
constant for a range of shear loadings up to about .6 of the normal loading.
The spatial distribution of contact forces shows strong concentration along
``force chains". The probability of contact forces of magnitude f shows an
exponential falloff with f. The response to a local perturbing force is
concentrated along two characteristic rays directed downward and laterally.Comment: 8 pages, 8 figure
Dynamical symmetry breaking in the Nambu-Jona-Lasino model with external gravitational and constant electric fields
An investigation of the Nambu-Jona-Lasino model with external constant
electric and weak gravitational fields is carried out in three- and four-
dimensional spacetimes. The effective potential of the composite bifermionic
fields is calculated keeping terms linear in the curvature, while the electric
field effect is treated exactly by means of the proper- time formalism.
A rich dynamical symmetry breaking pattern, accompanied by phase transitions
which are ruled, independently, by both the curvature and the electric field
strength is found. Numerical simulations of the transitions are presented.Comment: 20 pages, LaTeX, 6 .ps-figures, Final version published in "Classical
and Quantum Gravity
Near-Infrared Imaging Polarimetry of Inner Region of GG Tau A Disk
By performing non-masked polarization imaging with Subaru/HiCIAO, polarized
scattered light from the inner region of the disk around the GG Tau A system
was successfully detected in the band with a spatial resolution of
approximately 0.07\arcsec, revealing the complicated inner disk structures
around this young binary. This paper reports the observation of an arc-like
structure to the north of GG Tau Ab and part of a circumstellar structure that
is noticeable around GG Tau Aa extending to a distance of approximately 28 AU
from the primary star. The speckle noise around GG Tau Ab constrains its disk
radius to <13 AU. Based on the size of the circumbinary ring and the
circumstellar disk around GG Tau Aa, the semi-major axis of the binary's orbit
is likely to be 62 AU. A comparison of the present observations with previous
ALMA and near-infrared (NIR) H emission observations suggests that the
north arc could be part of a large streamer flowing from the circumbinary ring
to sustain the circumstellar disks. According to the previous studies, the
circumstellar disk around GG Tau Aa has enough mass and can sustain itself for
a duration sufficient for planet formation; thus, our study indicates that
planets can form within close (separation 100 AU) young binary
systems.Comment: Accepted for publication in AJ, 12 pages, 5 figure
Discovery of a Disk Gap Candidate at 20 AU in TW Hydrae
We present a new Subaru/HiCIAO high-contrast H-band polarized intensity (PI)
image of a nearby transitional disk associated with TW Hydrae. The scattered
light from the disk was detected from 0.2" to 1.5" (11 - 81 AU) and the PI
image shows a clear axisymmetric depression in polarized intensity at ~ 0.4" (~
20 AU) from the central star, similar to the ~ 80 AU gap previously reported
from HST images. Azimuthal polarized intensity profile also shows the disk
beyond 0.2" is almost axisymmetric. We discuss two possible scenarios
explaining the origin of the polarized intensity depression: 1) a gap structure
may exist at ~ 20 AU from the central star because of shallow slope seen in the
polarized intensity profile, and 2) grain growth may be occurring in the inner
region of the disk. Multi-band observations at NIR and
millimeter/sub-millimeter wavelengths play a complementary role in
investigating dust opacity and may help reveal the origin of the gap more
precisely.Comment: 8 pages, 2 figures, ApJL accepted for publicatio
Subaru Imaging of Asymmetric Features in a Transitional Disk in Upper Scorpius
We report high-resolution (0.07 arcsec) near-infrared polarized intensity
images of the circumstellar disk around the star 2MASS J16042165-2130284
obtained with HiCIAO mounted on the Subaru 8.2 m telescope. We present our
-band data, which clearly exhibits a resolved, face-on disk with a large
inner hole for the first time at infrared wavelengths. We detect the
centrosymmetric polarization pattern in the circumstellar material as has been
observed in other disks. Elliptical fitting gives the semimajor axis, semiminor
axis, and position angle (P.A.) of the disk as 63 AU, 62 AU, and -14
, respectively. The disk is asymmetric, with one dip located at P.A.s
of . Our observed disk size agrees well with a previous study
of dust and CO emission at submillimeter wavelength with Submillimeter Array.
Hence, the near-infrared light is interpreted as scattered light reflected from
the inner edge of the disk. Our observations also detect an elongated arc (50
AU) extending over the disk inner hole. It emanates at the inner edge of the
western side of the disk, extending inward first, then curving to the
northeast. We discuss the possibility that the inner hole, the dip, and the arc
that we have observed may be related to the existence of unseen bodies within
the disk.Comment: 21 pages, 3 figures, published 2012 November 7 by ApJL, typo
correcte
- …
