642 research outputs found

    Markdowns in Seasonal Conspicuous Goods

    Get PDF
    In common parlance, luxury and markdowns are, in many respects, contradictory concepts. Markdowns decrease product exclusivity and hence consumers’ willingness to pay (i.e., snob effect) since most consumers purchasing luxury desire uniqueness. Markdowns also encourage strategic (forward-looking) consumers to wait for lower prices (i.e., strategic effect). Yet, luxury retailers frequently adopt markdowns in practice to stimulate the demand for their seasonal products (i.e., sales effect). To study the impact of these three countervailing effects on a luxury retailer’s markdown policy and rationing strategy, this paper develops a game-theoretic model with strategic and exclusivity-seeking consumers who have heterogeneous (high and low) valuations. We characterize a luxury retailer’s equilibrium markdown and rationing strategies, and find that the retailer induces a buying frenzy (i.e., selling deliberately less than the demand) to increase consumers’ willingness to pay when they are sufficiently exclusivity-seeking. We show that the retailer’s markdown policy depends on consumers’ desire for exclusivity when the proportion of consumers with high valuation is not too high or too low. Interestingly, we find that, in such cases, consumers’ higher desire for exclusivity does not motivate the retailer to increase exclusivity and to adopt uniform pricing. To the contrary, it motivates the retailer to decrease the exclusivity and to adopt markdowns. By doing so, we identify exclusivity-seeking consumer behavior as another rationale behind markdown pricing. Lastly, we find that, when selling to exclusivity-seeking consumers, the negative impact of strategic consumer behavior is lower; however, ignoring it can be more costly

    Methane transport and emissions from soil as affected by water table and vascular plants

    Get PDF
    Background: The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. Results: We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. Conclusions: We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions

    Bird Community Responses to Rest-Rotation Grazing in Western Canada\u27s Grasslands

    Get PDF
    Western Canada’s native grasslands support high levels of avian diversity including both resident and migrant species. Many grassland specialist bird populations, however, are in serious decline due to widespread habitat loss resulting from agricultural conversion and adverse land management. As the primary use on remaining grasslands, cattle grazing largely determines the availability and quality of bird species’ habitat, depending on the timing, intensity, and frequency of livestock use. While adaptive multi-paddock grazing (AMP, a short duration, high-intensity grazing system that prioritises plant recovery between grazing events) is growing in popularity, comprehensive assessments of bird diversity in relation to AMP grazing practices are largely lacking. As part of a larger grazing management study, we examined how AMP grazing practices influence the taxonomic and phylogenetic diversity of bird species, compared to neighbouring (n-AMP) properties managed with more conventional grazing practices. In addition to the AMP/n-AMP contrast, we used rancher survey information to test for the influence of specific grazing practices over and above biophysical effects. Bird communities were surveyed at 309 point count locations across 38 ranches (set up as matched pairs) using visual and acoustic detection. Overall, we identified 96 bird species, of which 81 species were recorded on AMP-grazed ranches compared to 84 species on grasslands under n-AMP grazing, ranging from 10-32 species per ranch. We observed a considerable grazing management signal on species abundance and diversity including significant associations between some threatened species and n-AMP grazing. Moreover, AMP grazing, and specifically the use of higher rest-to-grazing ratios early in the growing season (prior to August 1), was associated with phylogenetically more clustered bird communities. Overall, this study highlights the potential of specialized rotational grazing systems to alter the composition and phylogenetic diversity of grassland bird communities. In conclusion, we stress the importance for prioritisation of strategic management plans to safeguard and restore North America’s grassland bird communities

    Cancer-Associated Fibroblasts Suppress CD8<sup>+</sup> T-cell Infiltration and Confer Resistance to Immune-Checkpoint Blockade

    Get PDF
    \ua92022 The Authors. Immune-checkpoint blockade (ICB) promotes antitumor immune responses and can result in durable patient benefit. However, response rates in breast cancer patients remain modest, stimulating efforts to discover novel treatment options. Cancer-associated fibroblasts (CAF) represent a major component of the breast tumor microenvironment and have known immunosuppressive functions in addition to their well-established roles in directly promoting tumor growth and metastasis. Here we utilized paired syngeneic mouse mammary carcinoma models to show that CAF abundance is associated with insensitivity to combination aCTLA4 and aPD-L1 ICB. CAF-rich tumors exhibited an immunologically cold tumor microenvironment, with transcriptomic, flow cytometric, and quantitative histopathologic analyses demonstrating a relationship between CAF density and a CD8+ T-cell–excluded tumor phenotype. The CAF receptor Endo180 (Mrc2) is predominantly expressed on myofibroblastic CAFs, and its genetic deletion depleted a subset of aSMA-expressing CAFs and impaired tumor progression in vivo. The addition of wild-type, but not Endo180-deficient, CAFs in coimplantation studies restricted CD8+ T-cell intratumoral infiltration, and tumors in Endo180 knockout mice exhibited increased CD8+ T-cell infiltration and enhanced sensitivity to ICB compared with tumors in wild-type mice. Clinically, in a trial of melanoma patients, high MRC2 mRNA levels in tumors were associated with a poor response to aPD-1 therapy, highlighting the potential benefits of therapeutically targeting a specific CAF subpopulation in breast and other CAF-rich cancers to improve clinical responses to immunotherapy

    Impairment of a distinct cancer-associated fibroblast population limits tumour growth and metastasis

    Get PDF
    \ua9 2021, The Author(s). Profiling studies have revealed considerable phenotypic heterogeneity in cancer-associated fibroblasts (CAFs) present within the tumour microenvironment, however, functional characterisation of different CAF subsets is hampered by the lack of specific markers defining these populations. Here we show that genetic deletion of the Endo180 (MRC2) receptor, predominantly expressed by a population of matrix-remodelling CAFs, profoundly limits tumour growth and metastasis; effects that can be recapitulated in 3D co-culture assays. This impairment results from a CAF-intrinsic contractility defect and reduced CAF viability, which coupled with the lack of phenotype in the normal mouse, demonstrates that upregulated Endo180 expression by a specific, potentially targetable CAF subset is required to generate a supportive tumour microenvironment. Further, characterisation of a tumour subline selected via serial in vivo passage for its ability to overcome these stromal defects provides important insight into, how tumour cells adapt to a non-activated stroma in the early stages of metastatic colonisation

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the ïŹeld of medicine and water puriïŹcation, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modiïŹcation of nanoparticles and their properties were also discussed

    An olfactory self-test effectively screens for COVID-19

    Get PDF
    International audienceAbstract Background Key to curtailing the COVID-19 pandemic are wide-scale screening strategies. An ideal screen is one that would not rely on transporting, distributing, and collecting physical specimens. Given the olfactory impairment associated with COVID-19, we developed a perceptual measure of olfaction that relies on smelling household odorants and rating them online. Methods Each participant was instructed to select 5 household items, and rate their perceived odor pleasantness and intensity using an online visual analogue scale. We used this data to assign an olfactory perceptual fingerprint, a value that reflects the perceived difference between odorants. We tested the performance of this real-time tool in a total of 13,484 participants (462 COVID-19 positive) from 134 countries who provided 178,820 perceptual ratings of 60 different household odorants. Results We observe that olfactory ratings are indicative of COVID-19 status in a country, significantly correlating with national infection rates over time. More importantly, we observe indicative power at the individual level (79% sensitivity and 87% specificity). Critically, this olfactory screen remains effective in participants with COVID-19 but without symptoms, and in participants with symptoms but without COVID-19. Conclusions The current odorant-based olfactory screen adds a component to online symptom-checkers, to potentially provide an added first line of defense that can help fight disease progression at the population level. The data derived from this tool may allow better understanding of the link between COVID-19 and olfaction
    • 

    corecore