2,086 research outputs found
Finite-Temperature Mott Transition in the Two-Dimensional Hubbard Model
Mott transitions are studied in the two-dimensional Hubbard model by a
non-perturbative theory of correlator projection that systematically includes
spatial correlations into the dynamical mean-field approximation. Introducing a
nonzero second-neighbor transfer, a first-order Mott transition appears at
finite temperatures and ends at a critical point or curve.Comment: 2 pages, to appear in J. Mag. Mag. Mat. as proceedings of the
International Conference on Magnetism 200
Theory of Electron Differentiation, Flat Dispersion and Pseudogap Phenomena
Aspects of electron critical differentiation are clarified in the proximity
of the Mott insulator. The flattening of the quasiparticle dispersion appears
around momenta and on square lattices and determines the
criticality of the metal-insulator transition with the suppressed coherence in
that momentum region of quasiparticles. Such coherence suppression at the same
time causes an instability to the superconducting state if a proper incoherent
process is retained. The d-wave pairing interaction is generated from such
retained processes without disturbance from the coherent single-particle
excitations. Pseudogap phenomena widely observed in the underdoped cuprates are
then naturally understood from the mode-mode coupling of d-wave
superconducting(dSC) fluctuations with antiferromagnetic ones. When we assume
the existence of a strong d-wave pairing force repulsively competing with
antiferromagnetic(AFM) fluctuations under the formation of flat and damped
single-particle dispersion, we reproduce basic properties of the pseudogap seen
in the magnetic resonance, neutron scattering, angle resolved photoemission and
tunneling measurements in the cuprates.Comment: 9 pages including 2 figures, to appear in J. Phys. Chem. Solid
Multi-wavelength spectroscopic observation of EUV jet in AR 10960
We have studied the relationship between the velocity and temperature of a
solar EUV jet. The highly accelerated jet occurred in the active region NOAA
10960 on 2007 June 5. Multi-wavelength spectral observations with EIS/Hinode
allow us to investigate Doppler velocities at the wide temperature range. We
analyzed the three-dimensional angle of the jet from the stereoscopic analysis
with STEREO. Using this angle and Doppler velocity, we derived the true
velocity of the jet. As a result, we found that the cool jet observed with
\ion{He}{2} 256 \AA is accelerated to around which is over the upper limit of the chromospheric evaporation. The
velocities observed with the other lines are under the upper limit of the
chromospheric evaporation while most of the velocities of hot lines are higher
than that of cool lines. We interpret that the chromospheric evaporation and
magnetic acceleration occur simultaneously. A morphological interpretation of
this event based on the reconnection model is given by utilizing the
multi-instrumental observations.Comment: Accepted for publication in Ap
Absence of long-range superconducting correlations in the frustrated 1/2-filled band Hubbard model
We present many-body calculations of superconducting pair-pair correlations
in the ground state of the half-filled band Hubbard model on large anisotropic
triangular lattices. Our calculations cover nearly the complete range of
anisotropies between the square and isotropic triangular lattice limits. We
find that the superconducting pair-pair correlations decrease monotonically
with increasing onsite Hubbard interaction U for inter-pair distances greater
than nearest neighbor. For the large lattices of interest here the distance
dependence of the correlations approaches that for noninteracting electrons.
Both these results are consistent with the absence of superconductivity in this
model in the thermodynamic limit. We conclude that the effective 1/2-filled
band Hubbard model, suggested by many authors to be appropriate for the
kappa-(BEDT-TTF)-based organic charge-transfer solids, does not explain the
superconducting transition in these materials.Comment: 9 pages, 7 figures. Revised version to appear in Phys. Rev.
Self-Organization of Reconnecting Plasmas to Marginal Collisionality in the Solar Corona
We explore the suggestions by Uzdensky (2007) and Cassak et al. (2008) that
coronal loops heated by magnetic reconnection should self-organize to a state
of marginal collisionality. We discuss their model of coronal loop dynamics
with a one-dimensional hydrodynamic calculation. We assume that many current
sheets are present, with a distribution of thicknesses, but that only current
sheets thinner than the ion skin depth can rapidly reconnect. This assumption
naturally causes a density dependent heating rate which is actively regulated
by the plasma. We report 9 numerical simulation results of coronal loop
hydrodynamics in which the absolute values of the heating rates are different
but their density dependences are the same. We find two regimes of behavior,
depending on the amplitude of the heating rate. In the case that the amplitude
of heating is below a threshold value, the loop is in stable equilibrium.
Typically the upper and less dense part of coronal loop is collisionlessly
heated and conductively cooled. When the amplitude of heating is above the
threshold, the conductive flux to the lower atmosphere required to balance
collisionless heating drives an evaporative flow which quenches fast
reconnection, ultimately cooling and draining the loop until the cycle begins
again. The key elements of this cycle are gravity and the density dependence of
the heating function. Some additional factors are present, including pressure
driven flows from the loop top, which carry a large enthalpy flux and play an
important role in reducing the density. We find that on average the density of
the system is close to the marginally collisionless value.Comment: accepted for publication in The Astrophysical Journal, 33 pages, 12
figure
Improvement of solar cycle prediction: Plateau of solar axial dipole moment
Aims. We report the small temporal variation of the axial dipole moment near
the solar minimum and its application to the solar cycle prediction by the
surface flux transport (SFT) model. Methods. We measure the axial dipole moment
using the photospheric synoptic magnetogram observed by the Wilcox Solar
Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson
Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and
Magnetic Imager (HMI). We also use the surface flux transport model for the
interpretation and prediction of the observed axial dipole moment. Results. We
find that the observed axial dipole moment becomes approximately constant
during the period of several years before each cycle minimum, which we call the
axial dipole moment plateau. The cross-equatorial magnetic flux transport is
found to be small during the period, although the significant number of
sunspots are still emerging. The results indicates that the newly emerged
magnetic flux does not contributes to the build up of the axial dipole moment
near the end of each cycle. This is confirmed by showing that the time
variation of the observed axial dipole moment agrees well with that predicted
by the SFT model without introducing new emergence of magnetic flux. These
results allows us to predict the axial dipole moment in Cycle 24/25 minimum
using the SFT model without introducing new flux emergence. The predicted axial
dipole moment of Cycle 24/25 minimum is 60--80 percent of Cycle 23/24 minimum,
which suggests the amplitude of Cycle 25 even weaker than the current Cycle 24.
Conclusions. The plateau of the solar axial dipole moment is an important
feature for the longer prediction of the solar cycle based on the SFT model.Comment: 5 pages, 3 figures, accepted for publication in A&A Lette
Drude Weight of the Two-Dimensional Hubbard Model -- Reexamination of Finite-Size Effect in Exact Diagonalization Study --
The Drude weight of the Hubbard model on the two-dimensional square lattice
is studied by the exact diagonalizations applied to clusters up to 20 sites. We
carefully examine finite-size effects by consideration of the appropriate
shapes of clusters and the appropriate boundary condition beyond the imitation
of employing only the simple periodic boundary condition. We successfully
capture the behavior of the Drude weight that is proportional to the squared
hole doping concentration. Our present result gives a consistent understanding
of the transition between the Mott insulator and doped metals. We also find, in
the frequency dependence of the optical conductivity, that the mid-gap
incoherent part emerges more quickly than the coherent part and rather
insensitive to the doping concentration in accordance with the scaling of the
Drude weight.Comment: 9 pages with 10 figures and 1 table. accepted in J. Phys. Soc. Jp
Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method
Filling-control metal-insulator transition on the two-dimensional Hubbard
model is investigated by using the correlator projection method, which takes
into account momentum dependence of the free energy beyond the dynamical
mean-field theory. The phase diagram of metals and Mott insulators is analyzed.
Lifshitz transitions occur simultaneously with metal-insulator transitions at
large Coulomb repulsion. On the other hand, they are separated each other for
lower Coulomb repulsion, where the phase sandwiched by the Lifshitz and
metal-insulator transitions appears to show violation of the Luttinger sum
rule. Through the metal-insulator transition, quasiparticles retain nonzero
renormalization factor and finite quasi-particle weight in the both sides of
the transition. This supports that the metal-insulator transition is caused not
by the vanishing renormalization factor but by the relative shift of the Fermi
level into the Mott gap away from the quasiparticle band, in sharp contrast
with the original dynamical mean-field theory. Charge compressibility diverges
at the critical end point of the first-order Lifshitz transition at finite
temperatures. The origin of the divergence is ascribed to singular momentum
dependence of the quasiparticle dispersion.Comment: 24 pages including 10 figure
- …