3,527 research outputs found

    The Life-Cycle Permanent-Income Model and Consumer Durables

    Get PDF
    This paper presents an extension of the life-cycle permanent-income model of consumption to the case of a durable good whose purchase involves lumpy trans- actions costs. Where individual behavior is concerned, the implications of the model are different in some respects from those of standard consumption theory. Specifically, rather than choose an optimal path for the service flow from durables, the optimizing consumer will choose an optimal range and try to keep his service flow inside that range. The dynamics implied by this behavior is different from that of the stock adjustment model. Properties of aggregate durables consumption are derived by explicit aggregation. In particular, it is shown that expenditures on durables display very large short-run elasticity to changes in permanent income. Empirical tests of the sort suggested by Hall (1978) generally produce results that are in line with the predictions of the theory.

    Measuring impact of academic research in computer and information science on society

    Get PDF
    Academic research in computer & information science (CIS) has contributed immensely to all aspects of society. As academic research today is substantially supported by various government sources, recent political changes have created ambivalence amongst academics about the future of research funding. With uncertainty looming, it is important to develop a framework to extract and measure the information relating to impact of CIS research on society to justify public funding, and demonstrate the actual contribution and impact of CIS research outside academia. A new method combining discourse analysis and text mining of a collection of over 1000 pages of impact case study documents written in free-text format for the Research Excellence Framework (REF) 2014 was developed in order to identify the most commonly used categories or headings for reporting impact of CIS research by UK Universities (UKU). According to the research reported in REF2014, UKU acquired 83 patents in various areas of CIS, created 64 spin-offs, generated £857.5 million in different financial forms, created substantial employment, reached over 6 billion users worldwide and has helped save over £1 billion Pounds due to improved processes etc. to various sectors internationally, between 2008 and 2013

    Broadcasting in Noisy Radio Networks

    Full text link
    The widely-studied radio network model [Chlamtac and Kutten, 1985] is a graph-based description that captures the inherent impact of collisions in wireless communication. In this model, the strong assumption is made that node vv receives a message from a neighbor if and only if exactly one of its neighbors broadcasts. We relax this assumption by introducing a new noisy radio network model in which random faults occur at senders or receivers. Specifically, for a constant noise parameter p[0,1)p \in [0,1), either every sender has probability pp of transmitting noise or every receiver of a single transmission in its neighborhood has probability pp of receiving noise. We first study single-message broadcast algorithms in noisy radio networks and show that the Decay algorithm [Bar-Yehuda et al., 1992] remains robust in the noisy model while the diameter-linear algorithm of Gasieniec et al., 2007 does not. We give a modified version of the algorithm of Gasieniec et al., 2007 that is robust to sender and receiver faults, and extend both this modified algorithm and the Decay algorithm to robust multi-message broadcast algorithms. We next investigate the extent to which (network) coding improves throughput in noisy radio networks. We address the previously perplexing result of Alon et al. 2014 that worst case coding throughput is no better than worst case routing throughput up to constants: we show that the worst case throughput performance of coding is, in fact, superior to that of routing -- by a Θ(log(n))\Theta(\log(n)) gap -- provided receiver faults are introduced. However, we show that any coding or routing scheme for the noiseless setting can be transformed to be robust to sender faults with only a constant throughput overhead. These transformations imply that the results of Alon et al., 2014 carry over to noisy radio networks with sender faults.Comment: Principles of Distributed Computing 201

    Electronic energy spectra and wave functions on the square Fibonacci tiling

    Full text link
    We study the electronic energy spectra and wave functions on the square Fibonacci tiling, using an off-diagonal tight-binding model, in order to determine the exact nature of the transitions between different spectral behaviors, as well as the scaling of the total bandwidth as it becomes finite. The macroscopic degeneracy of certain energy values in the spectrum is invoked as a possible mechanism for the emergence of extended electronic Bloch wave functions as the dimension changes from one to two

    Monovalent Ion Condensation at the Electrified Liquid/Liquid Interface

    Full text link
    X-ray reflectivity studies demonstrate the condensation of a monovalent ion at the electrified interface between electrolyte solutions of water and 1,2-dichloroethane. Predictions of the ion distributions by standard Poisson-Boltzmann (Gouy-Chapman) theory are inconsistent with these data at higher applied interfacial electric potentials. Calculations from a Poisson-Boltzmann equation that incorporates a non-monotonic ion-specific potential of mean force are in good agreement with the data.Comment: 4 pages, 4 figure

    Electroluminescence from single nanowires by tunnel injection: an experimental study

    Get PDF
    We present a hybrid light-emitting diode structure composed of an n-type gallium nitride nanowire on a p-type silicon substrate in which current is injected along the length of the nanowire. The device emits ultraviolet light under both bias polarities. Tunnel-injection of holes from the p-type substrate (under forward bias) and from the metal (under reverse bias) through thin native oxide barriers consistently explains the observed electroluminescence behaviour. This work shows that the standard p-n junction model is generally not applicable to this kind of device structure.Comment: 6 pages, 6 figure
    corecore