971 research outputs found

    Realization of two Fourier-limited solid-state single-photon sources

    Full text link
    We demonstrate two solid-state sources of indistinguishable single photons. High resolution laser spectroscopy and optical microscopy were combined at T = 1.4 K to identify individual molecules in two independent microscopes. The Stark effect was exploited to shift the transition frequency of a given molecule and thus obtain single photon sources with perfect spectral overlap. Our experimental arrangement sets the ground for the realization of various quantum interference and information processing experiments.Comment: 6 page

    Molecules as Sources for Indistinguishable Single Photons

    Full text link
    We report on the triggered generation of indistinguishable photons by solid-state single-photon sources in two separate cryogenic laser scanning microscopes. Organic fluorescent molecules were used as emitters and investigated by means of high resolution laser spectroscopy. Continuous-wave photon correlation measurements on individual molecules proved the isolation of single quantum systems. By using frequency selective pulsed excitation of the molecule and efficient spectral filtering of its emission, we produced triggered Fourier-limited single photons. In a further step, local electric fields were applied to match the emission wavelengths of two different molecules via Stark effect. Identical single photons are indispensible for the realization of various quantum information processing schemes proposed. The solid-state approach presented here prepares the way towards the integration of multiple bright sources of single photons on a single chip.Comment: Accepted for publication in J. Mod. Opt. This is the original submitted versio

    On the Definition of Effective Permittivity and Permeability For Thin Composite Layers

    Get PDF
    The problem of definition of effective material parameters (permittivity and permeability) for composite layers containing only one-two parallel arrays of complex-shaped inclusions is discussed. Such structures are of high importance for the design of novel metamaterials, where the realizable layers quite often have only one or two layers of particles across the sample thickness. Effective parameters which describe the averaged induced polarizations are introduced. As an explicit example, we develop an analytical model suitable for calculation of the effective material parameters ϵeff\epsilon_{\rm{eff}} and μeff\mu_{\rm{eff}} for double arrays of electrically small electrically polarizable scatterers. Electric and magnetic dipole moments induced in the structure and the corresponding reflection and transmission coefficients are calculated using the local field approach for the normal plane-wave incidence, and effective parameters are introduced through the averaged fields and polarizations. In the absence of losses both material parameters are purely real and satisfy the Kramers-Kronig relations and the second law of thermodynamics. We compare the analytical results to the simulated and experimental results available in the literature. The physical meaning of the introduced parameters is discussed in detail.Comment: 6 pages, 5 figure

    Quantum Interference of Tunably Indistinguishable Photons from Remote Organic Molecules

    Full text link
    We demonstrate two-photon interference using two remote single molecules as bright solid-state sources of indistinguishable photons. By varying the transition frequency and spectral width of one molecule, we tune and explore the effect of photon distinguishability. We discuss future improvements on the brightness of single-photon beams, their integration by large numbers on chips, and the extension of our experimental scheme to coupling and entanglement of distant molecules

    Electronic Health Records on the Top of Medical Device Incident Reports

    Get PDF
    Publisher Copyright: © 2022 European Federation for Medical Informatics (EFMI) and IOS Press.Medical Device incident reporting is a legal obligation for professional users in Finland. We analyzed all medical device incident reports recorded into the national incident repository from January 2014 to August 2021. Almost 30% of the total of 5,897 recorded incidents were caused by top ten devices, of which electronic health records were the most common (332 incidents). High number of incidents caused by electronic health records arouses safety concerns. A further analysis is required to explore the causes of findings.Peer reviewe

    Medical Device Incident Reports by Professional Users in Finland 2014 2021

    Get PDF
    Publisher Copyright: © 2022 The authors and IOS Press.Medical Device incident reporting is a legal obligation for professional users in Finland. We analyzed all medical device incident reports recorded into the national incident repository from January 2014 to August 2021. Among the total 5,897 records, annual numbers of incident reports varied between 463 and 1,190. Approximately 80% of the medical device incident reports were near misses, 18.7% were person injuries and 1.3% deaths. The number of annual medical device incident reports between hospital districts varied more than expected when related to the population of catchment area. There was a tendency towards lesser reports per population from smaller hospital districts. In conclusion, medical device incident reporting activity of the professional user varied both annually and geographically. A high number of incidents caused person injuries or even death, which arouses safety concerns. A further analysis is required to explore the causes behind our findings.Peer reviewe

    Diffusion in periodic potentials with path integral hyperdynamics

    Get PDF
    We consider the diffusion of Brownian particles in one-dimensional periodic potentials as a test bench for the recently proposed stochastic path integral hyperdynamics (PIHD) scheme [Chen and Horing, J. Chem. Phys. 126, 224103 (2007)]. First, we consider the case where PIHD is used to enhance the transition rate of activated rare events. To this end, we study the diffusion of a single Brownian particle moving in a spatially periodic potential in the high-friction limit at low temperature. We demonstrate that the boost factor as compared to straight molecular dynamics (MD) has nontrivial behavior as a function of the bias force. Instead of growing monotonically with the bias, the boost attains an optimal maximum value due to increased error in the finite path sampling induced by the bias. We also observe that the PIHD method can be sensitive to the choice of numerical integration algorithm. As the second case, we consider parallel resampling of multiple bias force values in the case of a Brownian particle in a periodic potential subject to an external ac driving force. We confirm that there is no stochastic resonance in this system. However, while the PIHD method allows one to obtain data for multiple values of the ac bias, the boost with respect to MD remains modest due to the simplicity of the equation of motion in this case.Peer reviewe

    Bis­(benzene­thiol­ato)(2,2′-biquinoline)zinc(II)

    Get PDF
    The title compound, [Zn(C6H5S)2(C18H12N2)], was prepared as a model for future complexes that will be incorporated into light-harvesting arrays. The ZnII atom lies on a twofold rotation axis and the ligands are arranged tetra­hedrally around this atom. The benzene­thiol­ate ligand and the biquinoline ligand are nearly perpendicular to one another, making a dihedral angle of 84.09 (5)°. The biquinoline ligand is nearly planar, with a maximum deviation of 0.055 (3) Å from the mean plane of the ring system. In the crystal, the mol­ecules pack in a manner such that the biquinoline ligands are parallel to one another, with a π–π inter­action [interplanar distance = 3.38 (1) Å] with the neighboring biquinoline ligand
    corecore