73 research outputs found
Adaptive Process Management in Highly Dynamic and Pervasive Scenarios
Process Management Systems (PMSs) are currently more and more used as a
supporting tool for cooperative processes in pervasive and highly dynamic
situations, such as emergency situations, pervasive healthcare or domotics/home
automation. But in all such situations, designed processes can be easily
invalidated since the execution environment may change continuously due to
frequent unforeseeable events. This paper aims at illustrating the theoretical
framework and the concrete implementation of SmartPM, a PMS that features a set
of sound and complete techniques to automatically cope with unplanned
exceptions. PMS SmartPM is based on a general framework which adopts the
Situation Calculus and Indigolog
The State of the Art in Multilayer Network Visualization
Modelling relationships between entities in real-world systems with a simple
graph is a standard approach. However, reality is better embraced as several
interdependent subsystems (or layers). Recently the concept of a multilayer
network model has emerged from the field of complex systems. This model can be
applied to a wide range of real-world datasets. Examples of multilayer networks
can be found in the domains of life sciences, sociology, digital humanities and
more. Within the domain of graph visualization there are many systems which
visualize datasets having many characteristics of multilayer graphs. This
report provides a state of the art and a structured analysis of contemporary
multilayer network visualization, not only for researchers in visualization,
but also for those who aim to visualize multilayer networks in the domain of
complex systems, as well as those developing systems across application
domains. We have explored the visualization literature to survey visualization
techniques suitable for multilayer graph visualization, as well as tools,
tasks, and analytic techniques from within application domains. This report
also identifies the outstanding challenges for multilayer graph visualization
and suggests future research directions for addressing them
An empirical investigation of performance overhead in cross-platform mobile development frameworks
The heterogeneity of the leading mobile platforms in terms of user interfaces, user experience, programming language, and ecosystem have made cross-platform development frameworks popular. These aid the creation of mobile applications – apps – that can be executed across the target platforms (typically Android and iOS) with minimal to no platform-specific code. Due to the cost- and time-saving possibilities introduced through adopting such a framework, researchers and practitioners alike have taken an interest in the underlying technologies. Examining the body of knowledge, we, nonetheless, frequently encounter discussions on the drawbacks of these frameworks, especially with regard to the performance of the apps they generate. Motivated by the ongoing discourse and a lack of empirical evidence, we scrutinised the essential piece of the cross-platform frameworks: the bridge enabling cross-platform code to communicate with the underlying operating system and device hardware APIs. The study we present in the article benchmarks and measures the performance of this bridge to reveal its associated overhead in Android apps. The development of the artifacts for this experiment was conducted using five cross-platform development frameworks to generate Android apps, in addition to a baseline native Android app implementation. Our results indicate that – for Android apps – the use of cross-platform frameworks for the development of mobile apps may lead to decreased performance compared to the native development approach. Nevertheless, certain cross-platform frameworks can perform equally well or even better than native on certain metrics which highlights the importance of well-defined technical requirements and specifications for deliberate selection of a cross-platform framework or overall development approach
Characterization of Coastal Urban Watershed Bacterial Communities Leads to Alternative Community-Based Indicators
BACKGROUND: Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. METHODOLOGY/PRINCIPAL FINDINGS: Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and alpha-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. CONCLUSIONS/SIGNIFICANCE: This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health
Microbial diversity and biogeochemical cycling in soda lakes
Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art ‘meta-omic’ techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments
- …