

Adaptive process management in highly dynamic and
pervasive scenarios
Citation for published version (APA):
Leoni, de, M. (2009). Adaptive process management in highly dynamic and pervasive scenarios. In M. H. Beek,
ter (Ed.), Proceedings Fourth European Young Researchers Workshop on Service Oriented Computing, (YR-
SOC 2009, Pisa, Italy, June 17-19, 2009) (pp. 83-97). (Electronic Proceedings in Theoretical Computer Science;
Vol. 2). https://doi.org/10.4204/EPTCS.2.7

DOI:
10.4204/EPTCS.2.7

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.4204/EPTCS.2.7
https://doi.org/10.4204/EPTCS.2.7
https://research.tue.nl/en/publications/74a93c66-82e5-49de-a973-203960a092bd

M.H. ter Beek (Ed.): Young Researchers Workshop
on Service-Oriented Computing 2009 (YR-SOC’09).
EPTCS 2, 2009, pp. 83–97, doi:10.4204/EPTCS.2.7

c© M. de Leoni
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

Adaptive Process Management in Highly Dynamic and
Pervasive Scenarios

Massimiliano de Leoni
Dipartimento di Informatica e Sistemistica

SAPIENZA – Università di Roma

deleoni@dis.uniroma1.it

Process Management Systems (PMSs) are currently more and more used as a supporting tool for
cooperative processes in pervasive and highly dynamic situations, such as emergency situations, per-
vasive healthcare or domotics/home automation. But in all such situations, designed processes can
be easily invalidated since the execution environment may change continuously due to frequent un-
foreseeable events. This paper aims at illustrating the theoretical framework and the concrete imple-
mentation ofSmartPM, a PMS that features a set of sound and complete techniques toautomatically
cope with unplanned exceptions. PMSSmartPM is based on a general framework which adopts the
Situation Calculus andIndiGolog.

1 Introduction

Nowadays organisations are always trying to improve the performance of the processes they are part of.
It does not matter whether such organisations are dealing with classical static business domains, such as
loans, bank accounts or insurances, or with pervasive and highly dynamic scenarios. The demands are
always the same: seeking more efficiency for their processesto reduce the time and the cost for their
execution.

According to the definition given by the Workflow Management Coalition,1 a workflow is “the com-
puterised facilitation of automation of a business process, in whole or part”. The Workflow Management
Coalition defines a Workflow Management System as “a system that completely defines, manages and
executes workflows through the execution of software whose order of execution is driven by a computer
representation of the workflow logic”. Workflow Management Systems (WfMSs) are also known as Pro-
cess Management Systems (PMSs), and we are going to use both of them interchangeably throughout this
thesis. Accordingly, this thesis uses many times word “process” is place of word “workflow”, although
the original acceptation of the former is not intrinsicallyreferring to its computerised automation.

In this paper we turn our attention to highly dynamic and pervasive scenarios. Pervasive scenarios
comprise, for instance, emergency management, health careor home automation (a.k.a. domotics). All of
these scenarios are characterised as being very dynamic andturbulent and subject to an higher frequency
of unexpected contingencies with respect to classical scenarios. Therefore, PMSs for pervasive scenarios
should provide a higher degree of operational flexibility/adaptability.

According to Andresen and Gronau [1] adaptability can be seen as an ability to change something to
fit to occurring changes. Adaptability is to be understood here as the ability of a PMS to adapt/modify
processes efficiently and fast to change circumstances. Adaptation aims at reducing the gap of thevirtual
reality, the (idealized) model of reality that is used by the PMS to deliberate, from thephysical reality, the
real world with the actual values of conditions and outcomes[2]. Exogenous events may make deviate

1http://wfmc.org

http://dx.doi.org/10.4204/EPTCS.2.7
http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://wfmc.org

84 Adaptive PM in Highly Dynamic and Pervasive Scenarios

Table 1: Adaptability in the leading PMSs (as from [11]).
Product Manual Pre-planned Unplanned
YAWL X

COSA X X

Tibco X X

WebSphere X X

SAP X X

OPERA X X

ADEPT2 X

ADOME X

AgentWork X

the virtual reality from the physical reality. The reduction of this gap requires sufficient knowledge of
both kinds of realities (virtual and physical). Such knowledge, harvested by the services performing the
process tasks, would allow the PMS to sense deviations and todeal with their mitigation.

In pervasive settings, efficiency and effectiveness when carrying on processes are a strong require-
ment. For instance, in emergency management saving minutescould result in saving injured people,
preventing buildings from collapses, and so on. Or, pervasive health-care processes can cause people’s
permanent diseases when not executed by given deadlines. Inorder to improve effectiveness of pro-
cess execution, adaptation ought to be as automatic as possible and to require minimum manual human
intervention. Indeed, human intervention would cause delays, which might not be acceptable.

In theory there are three possibilities to deal with deviations:

1. Ignoring deviations – this is, of course, not feasible in general, since the new situation might be
such that the PMS is no more able to carry out the process instance.

2. Anticipating all possible discrepancies – the idea is to include in the process schema the actions
to cope with each of such failures. This can be seen as atry-catch approach, used in some
programming languages such as Java. The process is defined asif exogenous actions cannot occur,
that is everything runs fine (thetry block). Then, for each possible exogenous event, acatch

block is designed in which the method is given to handle the corresponding exogenous event. For
simple and mainly static processes, this is feasible and valuable; but, especially in mobile and
highly dynamic scenarios, it is quite impossible to take into account all exception cases.

3. Devising a general recovery method able to handle any kindof exogenous events – considering
again the metaphor of try/catch, there exists just onecatch block, able to handle any exogenous
events, included the unexpected. Thecatch block activates the general recovery method to modify
the old processP in a processP′ so thatP′ can terminate in the new environment and its goals are
included in those ofP. This approach relies on the execution monitor (i.e., the module intended for
execution monitoring) that detects discrepancies leadingthe process instance not to be terminable.
When they are sensed, the control flow moves to thecatch block. An important challenge here is
to build the monitor which is able to identify which exogenous events are relevant, i.e. that make
impossible process to terminate, as well as toautomaticallysynthesizeP′ during the execution
itself.

Table 1 shows the adaptability features of the most valuablePMSs according to the state-of-art anal-
ysis described in [11]. ColumnManual refers to the possibility of a responsible person who manually
changes the process schema to deal with exogenous events. Column Pre-planned concerns the feature

M. de Leoni 85

of defining policies to specify the adaptation behaviour to manage some exogenous events, whose pos-
sible occurrence is foreseeable a priori. The last columnUnplanned refers to the third approach in the
classification above.

The third approach seems to be the most appropriate when dealing with scenarios where(i) the
frequency of unexpected exogenous events are relatively high and(ii) there are several exogenous events
that cannot be foreseen before their actual occurrence. Unfortunately, as the table shows, the world
leading PMSs are unable to feature the third approach.

This paper describesSmartPM, a PMS that features some sound and complete techniques according
to the third approach described above. Such techniques are meant to improve the degree ofautomatic
adaptation to react to very frequent changes in the execution environment and fit processes accordingly.
The techniques proposed here are based on Situation Calculus [13] and automatic planning, conceived
to coordinate robots and intelligent agents. The concrete implementation, namelySmartPM, is based on
the IndiGolog interpreter developed at University of Toronto and RMIT University, Melbourne.

In SmartPM, every entity performing task is generally named “service”. A service may be a human
actor/process participant as well as an automatic service that execute a certain job (e.g., a SOAP-based
Web Service).

Let us consider a scenario for emergency management where processes show typical a complexity
that is comparable to business settings. Therefore, the usage of PMS is valuable to coordinate the ac-
tivities of emergency operators. In these scenarios, operators are typically equipped with low-profile
devices, such as PDAs, which several services are installedon. Such services may range from usual
GUI-based applications to automatic ones. For instances, some applications can be installed to fill ques-
tionnaires or take pictures. In addition, PDAs can be provided with some automatic services that connect
to the Civil Protection headquarters to retrieve information for the assessment of the affected area and
possibly send back the data collected.

PDAs communicate with each other by Mobile Ad-hoc Networks (MANETs), which are Wi-Fi net-
works that do not rely on a fixed infrastructure, such as Access Points. Devices can be the final recipients
of some packets sent by other devices as well as they can act asrelays and forward packets towards the
final destination.

In order to orchestrate the services installed on operator devices, such devices need to be continually
connected to the PMS through a loose connection: devices andthe PMS can communicate if there exists
a path of nodes that connects them in the graph of the communication links.

In the virtual reality, devices are supposed to be continuously connected (i.e., a path always exists
between pairs of nodes). But in this physical reality continuous connections cannot be guaranteed: the
environment is highly dynamic and the movement of nodes (that is, devices and related operators) within
the affected area, while carrying out assigned tasks, can cause disconnections and make deviate the two
reality. Disconnections results in the unavailability of nodes and, hence, the services provided. From the
collection of actual user requirements [6], it results thattypical teams are formed by a few nodes (less
than 10 units), and therefore frequently a simple task reassignment is not feasible. Indeed, there may not
be two “similar” services available to perform a given task.Reordering task executions would not solve
the problem, either. There is no guarantee that eventually those services that provide unique capability
connect again to the PMS.

So, adaptaption is needed: adaptability might consist in this case to recover the disconnection of a
node X, and that can be achieved by assigning a task “Follow X”to another node Y in order to maintain
the connection. When the connection has been restored, the process can progress again.

86 Adaptive PM in Highly Dynamic and Pervasive Scenarios

Table 2:IndiGolog constructs.
Construct Meaning Platform Statement
a A primitive action a

φ? Wait while theφ condition is false ?(phi)

(δ1;δ2) Sequence of two sub-programsδ1 andδ2 [delta1,delta2]

proc P(−→v) δ Invocation of a procedure passing a vector−→v of parame-
ters

proc(P,delta)

(φ ;δ1)|(¬φ ;δ2) Exclusive choice betweenδ1 andδ2 according to the con-
dition φ

ndet([?(phi);delta1],

[?(neg(phi)),delta2])

whileφ do δ Iterative invocation ofδ while(phi,delta)

(δ1 ‖ δ2) Concurrent execution rrobin(delta1,delta2)

δ ∗ Indeterministic iteration of program execution (The plat-
form statement limits the maximum iterations number to
n)

star(delta,n)

Σ(δ) Emulating off-line execution searchn(delta,n)

πa.δ Indeterministic choice of argumenta followed by the ex-
ecution ofδ

pi(a,delta)

2 Preliminaries

In this section we introduce the Situation Calculus, which we use to formalizeSmartPM and its adap-
tation features. The Situation Calculus [13] is a second-order logic targeted specifically for representing
a dynamically changing domain of interest (the world). All changes in the world are obtained as result
of actions. A possible history of the actions is represented by asituation, which is a first-order term
denoting the current situation of the world. The constants0 denotes the initial situation. A special bi-
nary function symboldo(α ,s) denotes the next situation after performing the actionα in the situations.
Action may be parameterized.

Properties that hold in a situation are calledfluents. These are predicates taking a situation term as
their last argument. For instance, we could define the fluentf ree(x,s) stating whether the objectx is free
in situations, meaning no object is located onx in situations.

Changes in fluents (resulting from executing actions) are specified throughsuccessor state axioms.
In particular for each fluentF we have a successor state axioms as follows:

F(−→x ,do(α ,s)) ⇔ ΦF(−→x ,do(α ,s),s)

whereΦF(−→x ,do(α ,s),s) is a formula with free variables−→x , α is an action, ands is a situation.
In order to control the executions of actions we make use of high level programs expressed inIn-

diGolog [14], which is equipped with primitives for expressing concurrency. Table 2 summarizes the con-
structs ofIndiGolog used in this work. Basically, these constructs allow to define every well-structured
process as defined in [7]. The last table column shows the corresponding statement defined in theIn-

diGolog platform developed at University of Toronto and RMIT University.2

From the formal point of view,IndiGolog programs are terms. The execution ofConGolog programs
is expressed through atransition semanticbased on single steps of execution. At each step a program
executes an action and evolves to a new program which represents what remains to be executed of the
original program. Formally two predicates are introduced to specify such a sematic:

2Downloadable athttp://www.cs.toronto.edu/cogrobo/main/systems/index.html

http://www.cs.toronto.edu/cogrobo/main/systems/index.html

M. de Leoni 87

Figure 1: Execution Monitoring.

• Trans(δ ′
,s′,δ ′′

,s′′), given a programδ ′ and a situations′, returns(i) a new situations′′ resulting
from executing a single step ofδ ′, and(ii) δ ′′ which is the remaining program to be executed.

• Final(δ ′
,s′) returns true when the programδ ′ can be considered successfully completed in situa-

tion s′.

By usingTransandFinal we can define a predicateDo(δ ′
,s′,s′′) that represent successful complete

executions of a programδ ′ in a situations′, wheres′′ is the situation at the end of the execution ofδ ′.
Formally:

Do(δ ′
,s′,s′′) ⇔∃δ ′′

.Trans∗(δ ′
,s′,δ ′′

,s′′)∧Final(δ ′′
,s′′)

whereTrans∗ is the definition of the reflective and transitive closure ofTrans.
To cope with the impossibility of backtracking actions executed in the real world,IndiGolog incorpo-

rates a new programming construct, namely thesearch operator. Let δ be anyIndiGolog program, which
provides different alternative executable actions. When the interpreter encounters programΣ(δ), before
choosing among alternative executable actions ofδ and possible picks of variable values, it performs
reasoning in order to decide for a step which still allows therest ofδ to terminate successfully. Ifδ is
the entire program under consideration,Σ(δ) emulates complete off-line execution.

3 General Framework

The general framework which we shall introduce in this paperis based on theexecution monitoring
scheme as described in [2] for situation calculus agents. Aswe will later describe in more details, when
usingIndiGolog for process management, we take tasks to be predefined sequences of actions (see later)
and processes to beIndiGolog programs. After each action, the PMS may need to align the internal world
representation (i.e., the virtual reality) with the external one (i.e., the physical reality).

Before a process starts, PMS takes the initial context from the real environment and builds the cor-
responding initial situationS0, by means of first-order logic formulas. It also builds the programδ0

corresponding to the process to be carried on. Then, at each execution step, PMS, which has a complete
knowledge of the internal world (i.e., its virtual reality), assigns a task to a service. The only “assignable”

88 Adaptive PM in Highly Dynamic and Pervasive Scenarios

tasks are those whose preconditions are fulfilled. A servicecan collect data required needed to execute
the task assigned from PMS. When a service finishes executinga task, it alerts PMS of that.

The execution of the PMS can be interrupted by themonitormodule when a misalignment between
the virtual and the physical realities is discovered. In that case, the monitoradaptsthe (current) program
to deal with such discrepancy.

In Figure 1, the overall framework is depicted. At each step,the PMS advances the processδ in
situationsby executing an action, resulting then in a new situations′ with the processδ ′ remaining to be
executed. Boths′ andδ ′ are given as input to the monitor, which also collects data from the environment
throughsensors.3 If a discrepancy between the virtual reality as representedby s′ and the physical reality
is sensed, then the monitor changess′ to s′′, by generating a sequence of actions that explains the changes
perceived in the environment, thus re-aligning the virtualand physical realities. Notice, however, that
the processδ ′ mayfail to execute successfully (i.e., assign all tasks as required) in the new (unexpected)
situations′′. If so, the monitor adapts also the (current) process by performing suitable recovery changes
and generating then a new processδ ′′. At this point, the PMS is resumed and the execution continues
with program-processδ ′′ in situations′′.

4 Process Formalisation in Situation Calculus

Next we detail the general framework proposed above by usingSituation Calculus andIndiGolog. We
use some domain-independent predicates to denote the various objects of interest in the framework:

• service(a): a is a service

• task(x): x is a task

• capability(b): b is a capability

• provide(a,b): the servicea provides the capabilityb

• require(x,b): the taskx requires the capabilityb

In the light of these predicates, we have defined a shortcut torefer to the capability of a certain servicea
to perform a list of tasks, a.k.a. worklist. Servicea can execute a certain worklistwrkList iif a provides
all capabilities required by all tasks in the worklist:

Capable(a,wrklist) ⇔
(

∀b, t.t ∈ wrkList∧ require(b, t) ⇒ provide(a,b)
)

Every task execution is the sequence of four PMS actions:(i) the assignment of the task to a service,
resulting in the service being not free anymore;(ii) the notification to the service to start executing
the task. Then, the service carries out the tasks and, after receiving the service notification of the task
conclusion,(iii) the PMS acknowledges the successful task termination. Finally, (iv) the PMS releases
the service, which becomes free again. We formalise these four actions as follows:

• Assign(a,x): taskx is assigned to a servicea

• Start(a,x, p): servicea is allowed to start the execution of taskx. The input provided isp.

• AckTaskCompletion(a,x): servicea concluded successfully the executing ofx.

3Here, we refer assensorsnot only proper sensors (e.g., the ones deployed in sensor networks), but also any software
or hardware component enabling to retrieve contextual information. For instance, it may range from GIS clients to specific
hardware that makes available the communication distance of a device to its neighbors. [10]

M. de Leoni 89

• Release(a,x): the servicea is released with respect to taskx.

In addition, services can execute two actions:

• readyToStart(a,x): servicea declares to be ready to start performing taskx

• f inishedTask(a,x,q): servicea declares to have completed executing taskx returning outputq.

The termsp andq denote arbitrary sets of input/output, which depend on the specific task. Special
constant /0 denotes empty input or output.

The interleaving of actions performed by the PMS and services is as follows. After the assign-
ment of a certain taskx by Assign(a,x), when the servicea is ready to start executing, it executes
action readyToStartTask(a,x). At this stage, PMS executes actionStart(a,x, p), after whicha starts
executing taskx. Whena completes taskx, it executes the actionf inishedTask(a,x,q). Specifically,
we envision that actionsf inishedTask(·) are those in charge of changing properties of world as re-
sult of executing tasks. Whenx is completed, PMS is allowed in any moment to execute sequentially
AckTaskCompletion(a,x) andRelease(a,x). The program coding the process will the executed by only
one actor, specifically the PMS. Therefore, actionsreadyToStartTask(·) and f inishedTask(·) are con-
sidered as external and, hence, not coded in the program itself.

For each specific domain, we have several fluents representing the properties of situations. Some
of them are modelled independently of the domain whereas others, the majority, are defined according
to the domain. If they are independent of the domain, they canbe always formulated as defined in this
chapter. Among the domain-independent ones, we have fluentf ree(a,s), that denotes the fact that the
servicea is free, i.e., no task has been assigned to it, in the situation s. The corresponding successor state
axiom is as follows:

f ree(a,do(t,s)) ⇔
(

∀x.t 6= Assign(a,x)∧ f ree(a,s)
)

∨
(

¬ f ree(a,s)∧∃x.t = Release(a,x)
)

(1)

This says that a servicea is considered free in the current situation if and only ifa was free in the previous
situation and no tasks have been just assigned to it, ora was not free and it has been just released. There
exists also the domain-independent fluentenabled(x,a,s) which aims at representing whether servicea
has notified to be ready to execute a certain taskx so as to enabled it. The corresponding successor-state
axiom:

enabled(x,a,do(t,s)) ⇔
(

enabled(x,a,s)∧∀q.t 6= f inishedTask(a,x,q)
)

∨
(

¬enabled(x,a,s)∧ t = readyToStartTask(a,x)
)

(2)

This says thatenabled(x,a,s) holds in the current situation if and only if it held in the previous one
and no actionf inishedTask(a,x,q) has been performed or it was false in the previous situation and
readyToStartTask(a,x) has been executed. This fluent aims at enforcing the constraints that the PMS can
executeStart(a,x, p) only aftera performedbegun(a,x) and it can executeAckTaskCompletion(a,x,q)
only after f inishedTask(a,x,q). This can represented by two pre-conditions on actionsStart(·) and
AckTaskCompletion(·):

∀p.Poss(Start(a,x, p),s) ⇔ enabled(x,a,s)
∀p.Poss(AckTaskCompletion(x,a),s) ⇔¬enabled(x,a,s)

(3)

provided thatAckTaskCompletion(x,a) never comes beforeStart(x,a, p),s.

90 Adaptive PM in Highly Dynamic and Pervasive Scenarios

IndiGolog
Engine

Execute the
sense-think-act

loop

Communication
Manager
Manage the

communication with
each Device

Manager

SPIDE

Process Designer

Device 1

Device 2

...

Device N

Transition
System

Compute the
evolution of
high-level
programs

Temporal
Projector

Handle the
current situation

and fluent
values

Domain Programs

Encode the IndiGolog
program representing
a businnes process

Domain Axioms

Encode the action
theory for the current

program

Process.pl

PMS architectureEnvironment &
Services

XML to IndiGolog
Parser

Translate the
Activity Diagram

in a format readable
by PMS

Device
Manager #2

Device
Manager #1

Device
Manager #2

Device
Manager #3

Device
Manager #N

...

Execution Monitor

Tackle adaptivity

XML

Figure 2: Architecture of the PMS.

Furthermore, we introduce a domain-independent fluentstarted(x,a, p,s) that holds if and only if an
actionStart(a,x, p) has been executed but the dualAckTaskCompletion(x,a) has not yet:

started(a,x, p,do(t,s)) ⇔
(

started(a,x, p,s)∧ t 6= Stop(a,x)
)

∨
(

∄p′.started(x,a, p′ ,s)∧ t = Start(a,x, p)
)

(4)

In addition, we make use, in every specific domain, of a predicate available(a,s) which denotes
whether a servicea is available in situations for tasks assignment. However,available is domain-
dependent and, hence, requires to be defined specifically forevery domain. Knowing whether a service
is available is very important for the PMS when it has to perform assignments. Indeed, a taskx is assigned
to the best servicea which is available and provides every capability required by x. The fact that a certain
servicea is free does not imply it can be assigned to tasks (e.g., in theexample described above it has
to be free as well as it has to be indirectly connected to the coordinator). The definition ofavailable(·)
must enforce the following condition:

∀a s.available(a,s) ⇒ f ree(a,s) (5)

We do not give explicitly pre-conditions to task. We assume tasks can always be executed. We
assume that, given a task, if some conditions do not hold, then the outcomes of that tasks are not as
expected (in other terms, it fails).

5 The SmartPM System

This section aims at describing the internal structure of PMS. Figure 2 shows its conceptual architecture.
At the beginning, a responsible person designs an Activity Diagram through SPIDE, aProcess Designer
Graphical tool with whichSmartPM is equipped. Later, Such a tool translates the Activity Diagram in a
XML format file. Then, such a XML file is loaded into PMS. TheXML-to-IndiGolog Parsercomponent
translates this specification in aDomain Program, theIndiGolog program corresponding to the designed

M. de Leoni 91

process, and a set ofDomain Axioms, which is the action theory that comprises the initial situation, the
set of available actions with their pre- and post-conditions.

When the program is translated in the Domain Program and Axioms, a component namedCommu-
nication Manager(CM) starts up all ofdevice managers, which are basically some drivers for making
communicate PMS with the services and sensors installed on devices. For each real world device PMS
holds a device manager. Each device manager is also intendedfor notifying the associated device about
every action performed by theSmartPM engine as well as for notifying theSmartPM engine about the
actions executed by the services of the associated device.

After this initialization process, CM activates theIndiGolog Engine, which is in charge of executing
IndiGolog programs. Then, CM enters into a passive mode where it is listening for messages arriving
from the devices through the device managers. In general, a message can be a exogenous event harvested
by a certain sensor installed on a given device as well as a message notifying the start or completion of a
certain task. When CM judges a message as significant, it forwards it toIndiGolog. For instance, relevant
messages may be signals of the task completion or the sudden unavailability of a given device.

In sum, CM is responsible of deciding which device should perform certain actions, instructing the
appropriate device managers to communicate with the deviceservices and collecting the corresponding
sensing outcome. TheIndiGolog Engine is intended to execute asense-think-actinterleaved loop [8].
The cycle repeats at all times the following three steps:

1. check for exogenous events that have occurred;

2. calculate the next program step; and

3. if the step involves an action,executethe action, instructing the Communication Manager.

TheIndiGolog Engine relies on two further modules namedTransition SystemandTemporal Projec-
tor. The former is used to compute the evolution ofIndiGolog programs according to the statements’
semantic, whereas the latter is in charge of holding the current situations throughout the execution as
well as letting evaluate the fluent values for taking the right decision of the actions to perform.

The last module that is worth mentioning is theExecution Monitor(MON), which get notifications
of exogenous events from the Communication Manager. It decides whether adaptation is needed and
adapts accordingly the process. Section 7.2 gives some additional details of the concrete implementation
of monitoring and adaptation.

6 A Concrete Example from Emergency Management

We turn to describe the approach by an example concerning emergency management in an area affected
by an earthquake. The emergency response process in question comprises various activities that may
need to be adapted on-the-fly to react to unexpected exogenous events that could arise during the op-
eration. Figure 3 depicts an Activity Diagram of a process consisting of two concurrent branches; the
final task issend dataand can only be executed after the branches have successfully completed. The
left branch, abstracted out from the diagram, is built from several concurrent processes involving tasks
rescue, evacuationand others. The right branch begins with the concurrent execution of three sequences
of tasks:go, photo, andsurvey. When all survey tasks have been completed, the taskevaluate pictures
is executed. Then, a condition is evaluated on the resultingstate at a decision point (i.e., whether the
pictures taken are of sufficient quality). If the condition holds, the right branch is considered finished;
otherwise, the whole branch should be repeated.

92 Adaptive PM in Highly Dynamic and Pervasive Scenarios

Figure 3: An activity diagram of a process concerning emergency management.

Figure 4 shows some parts of theIndiGolog program representing the process of the example. The
code proposes here has been slightly simplified and abstracted for the sake of brevity. The main pro-
cedure, calledmain, involves three interrupts running at different priorities. The first highest priority
interrupt fires when an exogenous event occurs (i.e., condition exogEvent is true). In such a case, the
monitor procedure is executed, evaluating whether or not adaptation is required (see Section 7.2).

If no exogenous event has occurred, the second interrupt triggers and execution of the actual emer-
gency response process is attempted. Procedureprocess, also shown in the figure, encodes the Activity
Diagram of the example process. It relies, in turn, on procedure manageTasks(WrkLists), where
WrkLists is a sequence of elementsworkitem(T,I,D), each one representing a taskT, with identifier
I, and input dataD, which needs to be performed. This procedure is meant to manage the execution of
all tasks in the worklist, and it assigns them all to asingleservice that provides every capability required.

Of course, to assign tasks to an service,SmartPM needs to reason about the available ones, their
current state (e.g., their location), and their capabilities, as not every service is capable of performing
any task. In fact, before assigning the first task in any task list, proceduremanageTasks(WrkLists)
executes apick operation is done to choose a Servicesrvc that is involved in no task execution (i.e.,

M. de Leoni 93

proc(main,

prioritized_interrupts(

[interrupt(exogEvent, monitor),

interrupt(true, process),

interrupt(neg(finished), wait)]

)).

proc(process, [rrobin(processRescue,

while(or(noPhotos<7,neg(goodPics)),

[rrobin(

[manageTasks(

[workitem((go,id19,loc(5,5)),

workitem((photo,id20,loc(5,5)),

workitem((survey,id21,loc(5,5))]),

manageTasks(

[workitem((go,id19,loc(15,15)),

workitem((photo,id20,loc(15,15)),

workitem((survey,id21,loc(15,15))]),

manageTasks(

[workitem((go,id19,loc(50,50)),

workitem((photo,id20,loc(50,50)),

workitem((survey,id21,loc(50,50))]),

]

),

manageTasks([workitem((evalPics,id28,input)])

]) % end of while

), % end concurrent subprocesses

manageTasks([workitem((sendData,id29,input)])

]).

proc(manageTasks(WrkList),

pi(srvc,

[?(and(Available(srvc),Capable(srvc,WrkList))),

manageExecution(WrkList,srvc),

]

)).

proc(manageExecution([],Srvc),[]).

proc(manageExecution([workitem(Task,Id,I)|TAIL],Srvc),

[assign(Task,Id,Srvc,I),

start(Task,Id,Srvc,I),

ackTaskCompletion(Task,Id,Srvc),

release(Task,Id,Srvc,I),

manageExecution(TAIL,Srvc)

]

)

Figure 4: An example of process management withIndiGolog.

fluentFree(actr) holds) and able to execute the whole worklist.

Once a suitable service has been chosen, PMS assigns the listof tasks to it by executing
assign(srvc,WrkList). In addition to inform the service about the task assignment, such an action
turns fluentFree(actr) to false.

Then, PMS calls proceduremanageExecution(WrkList),which handles the execution of each task
in the list. For each task T in the list (with identifierI and input dataD), the procedure invokes action
start(T,D,I,srvc) that provides the required information to the chosen servicesrvc. In this way, the
service is instructed to begin working on the task and receives the required input. When a service finishes
executing an assigned task, it alertsSmartPM via actionfinishedTask(T,srvc); PMS acknowledges
by performingackTaskCompletion (T,D,actr). When the whole work-item list is execution, the
PMS releases the service by executing the actionrelease(T,D,actr), after which fluentFree(srvc)
is turned to true again.

94 Adaptive PM in Highly Dynamic and Pervasive Scenarios

It is worth mentioning that, if the process being carried outcannot execute temporarily further, the
lowest priority interrupt fires. This interrupt makes PMS wait for the conditions in which some tasks
can be executed. The fact that the process gets stuck does notimply necessarily the occurrence of some
relevant exogenous events. It could be also caused by the fact that next tasks can be only assigned
to services that are currently busy busy performing other tasks. The latter situation does not prevent
processes from being completed successfully; indeed, suchservices will be eventually free to work on
those tasks.

7 Adaptation in SmartPM

7.1 Monitoring Formalisation

Next we formalize how the monitor works. Intuitively, the monitor takes the current programδ ′ and
the current situations′ from the PMS’s virtual reality and, analyzing the physical reality by sensors,
introduces fake actions in order to get a new situations′′ which aligns the virtual reality of the PMS
with sensed information. Then, it analyzes whetherδ ′ can still be executed ins′′, and if not, it adaptsδ ′

by generating a new correctly executable programδ ′′. Specifically, the monitor work can be abstractly
defined as follows (we do not model how the situations′′ is generated from the sensed information):

Monitor(δ ′
,s′,s′′,δ ′′) ⇔

(

Relevant(δ ′
,s′,s′′)∧Recovery(δ ′

,s′,s′′,δ ′′)
)

∨
(

¬Relevant(δ ′
,s′,s′′)∧δ ′′ = δ ′

) (6)

where:(i) Relevant(δ ′
,s′,s′′) states whether the change from the situations′ into s′′ is such thatδ ′ cannot

be correctly executed anymore; and(ii) Recovery(δ ′
,s′,s′′,δ ′′) is intended to hold whenever the program

δ ′, to be originally executed in situations′, is adapted toδ ′′ in order to be executed in situations′′.
FormallyRelevantis defined as follows:

Relevant(δ ′
,s′,s′′) ⇔¬SameCon f ig(δ ′

,s′,δ ′
,s′′)

whereSameCon f ig(δ ′
,s′,δ ′′

,s′′) is true if executingδ ′ in s′ is “equivalent” to executingδ ′′ in s′′ (see
later for further details).

In this general framework we do not give a definition forSameCon f ig(δ ′
,s′,δ ′′

,s′′). However we
consider any definition forSameCon f igto be correct if it denotes a bisimulation [12]. Formally, for
everyδ ′

,s′,δ ′′
,s′′ holds:

1. Final(δ ′
,s′) ⇔ Final(δ ′′

,s′)

2. ∀ a,δ ′
.Trans

(

δ ′
,s′,δ ′

,do(a,s′)
)

⇒

∃ δ ′′
.Trans

(

δ ′′
,s′′,δ ′

,do(a,s′′)
)

∧SameCon f ig
(

δ ′
,do(a,s),δ ′′

,do(a,s′′)
)

3. ∀ a,δ ′
.Trans

(

δ ′′
,s′′,δ ′

,do(a,s′′)
)

⇒

∃ δ ′′
.Trans

(

δ ′
,s′,δ ′

,do(a,s′)
)

∧SameCon f ig
(

δ ′′
,do(a,s′′),δ ′

,do(a,s′)
)

Intuitively, a predicateSameCon f ig(δ ′
,s′,δ ′′

,s′′) is said to be correct ifδ ′ andδ ′′ are terminable
either both or none of them. Furthermore, for each actiona performable byδ ′ in the situations′, δ ′′

in the situations′′ has to enable the performance of the same actions (and viceversa). Moreover, the
resulting configurations(δ ′

,do(a,s′)) and(δ ′′
,do(a,s′)) must still satisfySameCon f ig.

The use of the bisimulation criteria to state when a predicate SameCon f ig(· · ·) is correct, derives
from the notion of equivalence introduced in [5]. When comparing the execution of two formally differ-
ent business processes, the internal states of the processes may be ignored, because what really matters

M. de Leoni 95

is the process behavior that can be observed. This view reflects the way a PMS works: indeed what is
of interest is the set of tasks that the PMS offers to its environment, in response to the inputs that the
environment provides.

Next we turn our attention to the procedure to adapt the process formalized byRecovery(δ ,s,s′ ,δ ′).
Formally is defined as follows:

Recovery(δ ′
,s′,s′′,δ ′′) ⇔∃δa,δb.δ ′′ = δa;δb∧Deterministic(δa)∧

Do(δa,s′′,sb)∧SameCon f ig(δ ′
,s′,δb,sb)

(7)

Recoverydetermines a processδ ′′ consisting of adeterministicδa (i.e., a program not using the
concurrency construct), and an arbitrary programδb. The aim ofδa is to lead from the situations′′ in
which adaptation is needed to a new situationsb whereSameCon f ig(δ ′

,s′,δb,sb) is true.
The nice feature of RECOVERY is that it asks to search for a linear program that achieves a certain

formula, namelySameState(s′,s′′). That is we have reduced the synthesis of a recovery program to a
classical Planning problem in AI [4]. As a result we can adopta well-developed literature about planning
for our aim. In particular, if the services and input and output parameters are finite, then the recovery can
be reduced topropositionalplanning, which is known to be decidable in general (for which very well
performing software tools exists).

Notice that during the actual recovery phaseδa we disallow for concurrency because we need full
control on the execution of each service in order to get to a recovered state. Then the actual recovered
programδb can again allow for concurrency.

In the previous sections we have provided a general description on how adaptation can be defined
and performed. Here we choose a specific technique that is actually feasible in practice. Our main step
is to adopt a specific definition forSameCon f ig, here denoted as SAMECONFIG, namely:

SAMECONFIG(δ ′
,s′,δ ′′

,s′′) ⇔ SameState(s′,s′′)∧δ ′ = δ ′′ (8)

In other words, SAMECONFIG states thatδ ′, s′ andδ ′′, s′′ are the same configuration if(i) all fluents
have the same truth values in boths′ ands′′ (SameState), and(ii) δ ′′ is actuallyδ ′.4 In papers [11, 9], we
have proved that the above-defined SAMECONFIG is a correct bisimulation.

Using Equation 8 asSameCon f igdefinition feasible in practice, relevancy results to be:

RELEVANT(δ ′
,s′,s′′) ⇔¬SameState(s′,s′′) (9)

In the next section, we are going to show how the abstract planner specification given here has been
concretely used insideSmartPM. Specifically the current version ofSmartPM uses the proportional
planner available in theIndiGolog platform developed by University of Toronto and RMIT in Melbourne.
In order to adapt,SmartPM is based on the concrete definitions of relevancy andSameCon f iggiven by
Equations 9 and 8.

7.2 The Execution Monitoring and Adaptation

As already told, adaptation amounts to find a linear program (i.e., without concurrency) that is meant
to be “appended” before the currentIndiGolog program remaining to be executed. Such a linear program
is meant to resolve the gap that was just sensed by restoring the values of affected fluents to those before
the occurrence of the deviation.

4Observe thatSameStatecan actually be defined as a first-order formula over the fluents, as the conjunction ofF(s′)⇔F(s′′)
for each fluentF .

96 Adaptive PM in Highly Dynamic and Pervasive Scenarios

proc(monitor,[ndet(

[?(neg(relevant))],

[?(relevant),recovery]

)]).

proc(recovery, searchn([searchProgram],10).

proc(searchProgram, [star(pi([Task,Id,Input,srvc],

[?(and(Available(srvc),

Capable(srvc,[workitem(Task,Id,Input)]))),

manageExecution([workitem(Task,Id,Input)],srvc)])),

?(SameState)]).

Figure 5: The procedure for managing automatic adaptation with the IndiGolog interpreter.

Figure 5 shows how adaptability has been concretely implemented inSmartPM. The execution of
the process being carried out bySmartPM can be interrupted by themonitor procedure when a mis-
alignment between the virtual and the physical reality is discovered.

The monitor procedure is the concrete coding of Equation 6 and relies on procedurerelevant.
Procedurerelevant returns true if the exogenous event has created a gap betweenthe physical and
virtual reality that is in accord with Equation 9. For this aim, SmartPM keeps a “copy” of the expected
value of each defined fluent so that when an exogenous action issensed it can check whether the action
has altered the value of some fluent.

If the gap is relevant, procedurerecovery is invoked. It amounts to find a linear program (i.e.,
without concurrency) to reduce the gap sensed as well as, if such a program is found, to execute it. After
executing such a linear program, the program coded by routine process (and its possible sub-routines)
can progress again. This behaviour is equivalent to that expressed formally in Equation 7 where the
adapting linear program is “appended before” and, hence, executed before the remaining process.

Therecovery procedure looks for a sequence of actions that brings to a situation in which proce-
dureSameState returns true:Σ

(

(πa.a)∗;SameState?
)

. ProcedureSameState tests whether executing
(πa.a)∗ really has really reduced the gap. The use of theIndiGolog’s lookahead operatorΣ guarantees
the action sequence(πa.a)∗ is chosen so as to makeSameState true. In fact, we do not look for any
action sequence(πa.a)∗ but we reduce the search space since we search for sequences of invocations of
proceduremanageExecution with appropriate parameters.

8 Conclusion

Most of existing PMSs are not completely appropriate for very dynamic and pervasive scenarios. In-
deed, such scenarios are turbulent and subject to a higher frequency of unexpected contingencies with
respect to usual business settings that show a static staticand foreseeable behaviour. This paper describes
SmartPM, an adaptive PMS that is able to adapt processes thus recovering from exceptions. Adaptation
is synthesized automatically without relying either on theintervention of domain experts or on the ex-
istence of specific handlers planned in advance to cope with specific exceptions. Space limitation has
prevented from including concrete examples of adaptation:interested readers can refer to [11].

Future works aim mostly at integratingSmartPM with state-of-art planners. Indeed, current imple-
mentation relies on theIndiGolog planner, which performs a blind search without using smarter tech-
niques recently proposed to reduce the search space by removing a priori all the possibility surely taking
to no solution. The most challenging issue is to convert Action Theories andIndiGolog programs in a
way they can be given as input to planners (e.g., converting to PDDL [3]).

M. de Leoni 97

Acknowledgments

The author wishes to thank to Giuseppe De Giacomo, Andrea Marrella, Massimo Mecella and Sebastian
Sardina, who have contributed to different aspects of theSmartPM development.

References

[1] K. Andresen & N. Gronau (2005):An Approach to Increase Adaptability in ERP Systems. In: Managing
Modern Organizations with Information Technology: Proceedings of the Information Resources Manage-
ment Association International Conference. Idea Group Publishing, pp. 883–885.

[2] G. De Giacomo, R. Reiter & M. Soutchanski (1998):Execution Monitoring of High-Level Robot Programs.
In: Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reason-
ing (KR’98). pp. 453–465.

[3] M. Fox & D. Long (2006):Modelling Mixed Discrete-Continuous Domains for Planning. Journal of Artificial
Intelligence Research27, pp. 235–297.

[4] M. Ghallab, D. Nau & P. Traverso (2004):Automated Planning: Theory and Practice. Morgan Kaufmann
Publishers.

[5] J. Hidders, M. Dumas, W.M.P. van der Aalst, A.H.M. ter Hofstede & J. Verelst (2005):When are two work-
flows the same? In: Proceedings of the Australasian symposium on Theory of computing (CATS’05).
Australian Computer Society, Inc., pp. 3–11.

[6] S.R. Humayoun, T. Catarci, M. de Leoni, A. Marrella, M. Mecella, M. Bortenschlager & R. Steinmann
(2009):The WORKPAD User Interface and Methodology: Developing Smart and Effective Mobile Applica-
tions for Emergency Operators. In: Proceedings of the 13th International Conference on Human-Computer
Interaction (HCI’09). Springer. To appear.

[7] B. Kiepuszewski, A.H.M. ter Hofstede & C. Bussler (2000): On Structured Workflow Modelling. In: Pro-
ceedings of the 12th International Conference on Advanced Information Systems Engineering (CAiSE’00).
Springer-Verlag, London, UK, pp. 431–445.

[8] R.A. Kowalski (1995):Using meta-logic to reconcile reactive with rational agents. Meta-logics and logic
programming, pp. 227–242.

[9] M. de Leoni, Massimo M. & G. De Giacomo (2007):Highly Dynamic Adaptation in Process Management
Systems Through Execution Monitoring. In: Proceedings of the 5th Internation Conference on Business
Process Management (BPM’07), Lecture Notes in Computer Science4714. Springer, pp. 182–197.

[10] M. de Leoni, M. Mecella & R. Russo (2007):A Bayesian Approach for Disconnection Management in Mobile
Ad Hoc Networks. In: Proceedings of the 16th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE’07). IEEE Computer Society, Washington, DC, USA,
pp. 62–67.

[11] M. de Leoni (2009):Adaptive Process Management in Highly Dynamic and Pervasive Scenarios. Computer
Engineering, SAPIENZA – Università di Roma. Draft Downloadable athttp://www.dis.uniroma1.it/
∼deleoni/documents/PhD.pdf.

[12] R. Milner (1980):A Calculus of Communicating Systems, Lecture Notes in Computer Science92. Springer.

[13] R. Reiter (2001):Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical
Systems. MIT Press.

[14] S. Sardina, G. De Giacomo, Y. Lespérance & H.J. Levesque (2004):On the Semantics of Deliberation in
Indigolog—from Theory to Implementation. Annals of Mathematics and Artificial Intelligence41(2-4), pp.
259–299.

http://www.dis.uniroma1.it/~deleoni/documents/PhD.pdf
http://www.dis.uniroma1.it/~deleoni/documents/PhD.pdf

	Introduction
	Preliminaries
	General Framework
	Process Formalisation in Situation Calculus
	The SmartPM System
	A Concrete Example from Emergency Management
	Adaptation in SmartPM
	Monitoring Formalisation
	The Execution Monitoring and Adaptation

	Conclusion

