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Process Management Systems (PMSs) are currently more aredused as a supporting tool for
cooperative processes in pervasive and highly dynamiatsitus, such as emergency situations, per-
vasive healthcare or domotics/home automation. But inuahssituations, designed processes can
be easily invalidated since the execution environment ni@ynge continuously due to frequent un-
foreseeable events. This paper aims at illustrating therétieal framework and the concrete imple-
mentation oSmartPM, a PMS that features a set of sound and complete technigaesdmatically
cope with unplanned exceptions. PM&artPM is based on a general framework which adopts the
Situation Calculus anthdiGolog.

1 Introduction

Nowadays organisations are always trying to improve theopmaance of the processes they are part of.
It does not matter whether such organisations are dealitigaléssical static business domains, such as
loans, bank accounts or insurances, or with pervasive agtdyhdlynamic scenarios. The demands are
always the same: seeking more efficiency for their procetssesduce the time and the cost for their
execution.

According to the definition given by the Workflow Managememaﬁlion@ a workflow is “the com-
puterised facilitation of automation of a business prodgesshole or part”. The Workflow Management
Coalition defines a Workflow Management System as “a systamcttmpletely defines, manages and
executes workflows through the execution of software whodermf execution is driven by a computer
representation of the workflow logic”. Workflow Managemegst&ms (WfMSs) are also known as Pro-
cess Management Systems (PMSs), and we are going to use bmdindnterchangeably throughout this
thesis. Accordingly, this thesis uses many times word “gsst is place of word “workflow”, although
the original acceptation of the former is not intrinsicalferring to its computerised automation.

In this paper we turn our attention to highly dynamic and psiwe scenarios. Pervasive scenarios
comprise, for instance, emergency management, healtlochoane automation (a.k.a. domotics). All of
these scenarios are characterised as being very dynamiarantent and subject to an higher frequency
of unexpected contingencies with respect to classicalesaen Therefore, PMSs for pervasive scenarios
should provide a higher degree of operational flexibilidgjptability.

According to Andresen and Gronad [1] adaptability can be seean ability to change something to
fit to occurring changes. Adaptability is to be understoockeles the ability of a PMS to adapt/modify
processes efficiently and fast to change circumstancetatifan aims at reducing the gap of thigual
reality, the (idealized) model of reality that is used by the PMS tideate, from theohysical reality the
real world with the actual values of conditions and outcof@2késExogenous events may make deviate
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Table 1: Adaptability in the leading PMSs (as framl[11]).
Product Manual | Pre-planned | Unplanned
YAWL
COSA
Tibco
WebSphere
SAP
OPERA
ADEPT2
ADOME
AgentWork
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the virtual reality from the physical reality. The reductiof this gap requires sufficient knowledge of
both kinds of realities (virtual and physical). Such knadge, harvested by the services performing the
process tasks, would allow the PMS to sense deviations asheltiovith their mitigation.

In pervasive settings, efficiency and effectiveness wheryicag on processes are a strong require-
ment. For instance, in emergency management saving mioatéd result in saving injured people,
preventing buildings from collapses, and so on. Or, pevealsealth-care processes can cause people’s
permanent diseases when not executed by given deadlinesden to improve effectiveness of pro-
cess execution, adaptation ought to be as automatic adfgoasd to require minimum manual human
intervention. Indeed, human intervention would causeydelhich might not be acceptable.

In theory there are three possibilities to deal with deoradi

1. Ignoring deviations — this is, of course, not feasible @mgral, since the new situation might be
such that the PMS is no more able to carry out the procesqiresta

2. Anticipating all possible discrepancies — the idea istdude in the process schema the actions
to cope with each of such failures. This can be seen &syacatch approach, used in some
programming languages such as Java. The process is defified@genous actions cannot occur,
that is everything runs fine (thery block). Then, for each possible exogenous evenrtatch
block is designed in which the method is given to handle thieesponding exogenous event. For
simple and mainly static processes, this is feasible angate; but, especially in mobile and
highly dynamic scenarios, it is quite impossible to take imtcount all exception cases.

3. Devising a general recovery method able to handle any édrekogenous events — considering
again the metaphor of try/catch, there exists just esech block, able to handle any exogenous
events, included the unexpected. Tae ch block activates the general recovery method to modify
the old proces® in a proces$’ so thatP’ can terminate in the new environment and its goals are
included in those oP. This approach relies on the execution monitor (i.e., thdul®intended for
execution monitoring) that detects discrepancies leatffiagprocess instance not to be terminable.
When they are sensed, the control flow moves tacisch block. An important challenge here is
to build the monitor which is able to identify which exogesaevents are relevant, i.e. that make
impossible process to terminate, as well asstomaticallysynthesizeP’ during the execution
itself.

Table[l shows the adaptability features of the most valuaM&s according to the state-of-art anal-
ysis described in [11]. ColumWanual refers to the possibility of a responsible person who mayual
changes the process schema to deal with exogenous evemhtsnr(ere-planned concerns the feature
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of defining policies to specify the adaptation behaviour tmage some exogenous events, whose pos-
sible occurrence is foreseeable a priori. The last columplanned refers to the third approach in the
classification above.

The third approach seems to be the most appropriate whemglesith scenarios wheré) the
frequency of unexpected exogenous events are relativgiydnd(ii) there are several exogenous events
that cannot be foreseen before their actual occurrenceortuniately, as the table shows, the world
leading PMSs are unable to feature the third approach.

This paper describe&gmartPM, a PMS that features some sound and complete techniqueslimgro
to the third approach described above. Such techniques eaatrto improve the degree afitomatic
adaptation to react to very frequent changes in the exetetigironment and fit processes accordingly.
The techniques proposed here are based on Situation Caldiliand automatic planning, conceived
to coordinate robots and intelligent agents. The concrefgementation, namelymartPM, is based on
thelndiGolog interpreter developed at University of Toronto and RMIT \émsity, Melbourne.

In SmartPM, every entity performing task is generally named “servicg’service may be a human
actor/process participant as well as an automatic serfieteeixecute a certain job (e.g., a SOAP-based
Web Service).

Let us consider a scenario for emergency management whecegses show typical a complexity
that is comparable to business settings. Therefore, tlgeusaPMS is valuable to coordinate the ac-
tivities of emergency operators. In these scenarios, tpsrare typically equipped with low-profile
devices, such as PDAs, which several services are installedSuch services may range from usual
GUI-based applications to automatic ones. For instanoase @pplications can be installed to fill ques-
tionnaires or take pictures. In addition, PDAs can be predidith some automatic services that connect
to the Civil Protection headquarters to retrieve informatfor the assessment of the affected area and
possibly send back the data collected.

PDAs communicate with each other by Mobile Ad-hoc NetwoaNETS), which are Wi-Fi net-
works that do not rely on a fixed infrastructure, such as Ae&asints. Devices can be the final recipients
of some packets sent by other devices as well as they can egdlags and forward packets towards the
final destination.

In order to orchestrate the services installed on operaarces, such devices need to be continually
connected to the PMS through a loose connection: devicetharfeMS can communicate if there exists
a path of nodes that connects them in the graph of the comationdinks.

In the virtual reality, devices are supposed to be contislyooconnected (i.e., a path always exists
between pairs of nodes). But in this physical reality camims connections cannot be guaranteed: the
environment is highly dynamic and the movement of noded {shdevices and related operators) within
the affected area, while carrying out assigned tasks, aaseadisconnections and make deviate the two
reality. Disconnections results in the unavailability oties and, hence, the services provided. From the
collection of actual user requirements [6], it results tiygical teams are formed by a few nodes (less
than 10 units), and therefore frequently a simple task rgasgnt is not feasible. Indeed, there may not
be two “similar” services available to perform a given taRleordering task executions would not solve
the problem, either. There is no guarantee that eventuadiget services that provide unique capability
connect again to the PMS.

So, adaptaption is needed: adaptability might consistigidase to recover the disconnection of a
node X, and that can be achieved by assigning a task “Followo)@hother node Y in order to maintain
the connection. When the connection has been restoredydbegs can progress again.
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Table 2:IndiGolog constructs.

Construct Meaning Platform Statement
a A primitive action a
Q? Wait while theg condition is false 7 (phi)
(01;02) Sequence of two sub-progradsandd, [deltal,delta2]
proc P(V) & Invocation of a procedure passing a vectoof parame-| proc(P,delta)
ters
(¢;01)|(—@; %) | Exclusive choice betwee® andd, according to the con{ ndet ([7 (phi) ;deltall,
dition ¢ [?(neg(phi)) ,delta2])
while @ dod Iterative invocation o while(phi,delta)
(&1 &) Concurrent execution rrobin(deltal,delta2)
o* Indeterministic iteration of program execution (The platstar (delta,n)
form statement limits the maximum iterations number to
n
)
>(9) Emulating off-line execution searchn(delta,n)
ma.o Indeterministic choice of argumeafollowed by the ex-| pi(a,delta)
ecution ofd

2 Prdiminaries

In this section we introduce the Situation Calculus, whiaghwse to formaliz&martPM and its adap-
tation features. The Situation Calculus|[13] is a secomtd#ologic targeted specifically for representing
a dynamically changing domain of interest (the world). Albages in the world are obtained as result
of actions A possible history of the actions is represented gitaation which is a first-order term
denoting the current situation of the world. The conswrdenotes the initial situation. A special bi-
nary function symbotlo(a, s) denotes the next situation after performing the actian the situatiors.
Action may be parameterized.

Properties that hold in a situation are calfedents These are predicates taking a situation term as
their last argument. For instance, we could define the flfiez®(x, s) stating whether the objestis free
in situations, meaning no object is located ann situations.

Changes in fluents (resulting from executing actions) aeeifipd throughsuccessor state axioms
In particular for each fluerft we have a successor state axioms as follows:

F(X,do(a,s)) & ®:(X,do(a,s),s)

where®r (X,do(a,s),s) is a formula with free variablex, a is an action, and s a situation.

In order to control the executions of actions we make use gt kevel programs expressed lin
diGolog [14], which is equipped with primitives for expressing carmency. Tabl€2 summarizes the con-
structs ofindiGolog used in this work. Basically, these constructs allow to deéwery well-structured
process as defined inl[7]. The last table column shows thegmonding statement defined in the
diGolog platform developed at University of Toronto and RMIT Unisigy

From the formal point of viewindiGolog programs are terms. The executionGeh Golog programs
is expressed throughteansition semantibased on single steps of execution. At each step a program
executes an action and evolves to a new program which refiseadat remains to be executed of the
original program. Formally two predicates are introduagdpecify such a sematic:

2Downloadable @http://www.cs.toronto.edu/cogrobo/main/systems/index. html
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Figure 1: Execution Monitoring.

e Trangd',s,d",s"), given a progran®’ and a situatiors, returns(i) a new situatiors’ resulting
from executing a single step éf, and(ii) &” which is the remaining program to be executed.

e Final(d’,9) returns true when the progradi can be considered successfully completed in situa-
tions.

By usingTransandFinal we can define a predicaieo(d’,s,s”) that represent successful complete
executions of a prograny’ in a situations, wheres” is the situation at the end of the executiondof
Formally:

Do(&,5,s") < 38" Trans (&,5,5",s") AFinal(8",5")

whereTrans is the definition of the reflective and transitive closurdmins

To cope with the impossibility of backtracking actions exted in the real worldindiGolog incorpo-
rates a new programming construct, namelysbarch operatarLet é be anylndiGolog program, which
provides different alternative executable actions. Winenititerpreter encounters prograifd), before
choosing among alternative executable action® aihd possible picks of variable values, it performs
reasoning in order to decide for a step which still allowsrdst of d to terminate successfully. 8 is
the entire program under considerati@fd) emulates complete off-line execution.

3 General Framework

The general framework which we shall introduce in this papdrased on th@xecution monitoring
scheme as described [n [2] for situation calculus agentsvéwill later describe in more details, when
usingIndiGolog for process management, we take tasks to be predefined segueractions (see later)
and processes to IediGolog programs. After each action, the PMS may need to align tleeriat world
representation (i.e., the virtual reality) with the exedrane (i.e., the physical reality).

Before a process starts, PMS takes the initial context ftomreal environment and builds the cor-
responding initial situatiors, by means of first-order logic formulas. It also builds thegyam &y
corresponding to the process to be carried on. Then, at eachtéon step, PMS, which has a complete
knowledge of the internal world (i.e., its virtual realif@ssigns a task to a service. The only “assignable”
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tasks are those whose preconditions are fulfilled. A serwdgecollect data required needed to execute
the task assigned from PMS. When a service finishes exeatiask, it alerts PMS of that.

The execution of the PMS can be interrupted byrinitor module when a misalignment between
the virtual and the physical realities is discovered. In tase, the monitaadaptsthe (current) program
to deal with such discrepancy.

In Figure[1, the overall framework is depicted. At each stbp, PMS advances the processn
situations by executing an action, resulting then in a new situasiomith the proces®’ remaining to be
executed. Botlg’ andd’ are given as input to the monitor, which also collects datmfthe environment
throughsensorg If a discrepancy between the virtual reality as represeiyefiand the physical reality
is sensed, then the monitor change® s’, by generating a sequence of actions that explains the ebang
perceived in the environment, thus re-aligning the virtaradl physical realities. Notice, however, that
the proces®’ mayfail to execute successfully (i.e., assign all tasks as reguimgtle new (unexpected)
situations’. If so, the monitor adapts also the (current) process bypeifig suitable recovery changes
and generating then a new procéss At this point, the PMS is resumed and the execution consinue
with program-proces8” in situations”.

4 Process Formalisation in Situation Calculus

Next we detail the general framework proposed above by uSitgation Calculus anthdiGolog. We
use some domain-independent predicates to denote thevarigects of interest in the framework:

e servicéa): ais a service

task(x): xis a task

capability(b): bis a capability

providga,b): the servicea provides the capability

require(x, b): the taskx requires the capabilitip

In the light of these predicates, we have defined a shortagff¢éo to the capability of a certain serviae
to perform a list of tasks, a.k.a. worklist. Servigean execute a certain workligirkList iif a provides
all capabilities required by all tasks in the worklist:

Capabléa, wrklist) < (Vb,t.t € wrkList A require(b,t) = providega, b))

Every task execution is the sequence of four PMS actifpthe assignment of the task to a service,
resulting in the service being not free anymo(i; the notification to the service to start executing
the task. Then, the service carries out the tasks and, &fteiving the service notification of the task
conclusion,(iii) the PMS acknowledges the successful task termination.|Ifirf) the PMS releases
the service, which becomes free again. We formalise theseafdions as follows:

e Assigria, x): taskx is assigned to a serviee
e Start(a,x, p): serviceais allowed to start the execution of tagkThe input provided i9.

e AckTaskCompletidia,x): servicea concluded successfully the executingxof

SHere, we refer asensorsnot only proper sensors (e.g., the ones deployed in senseome), but also any software
or hardware component enabling to retrieve contextualinéion. For instance, it may range from GIS clients to dpeci
hardware that makes available the communication distaha@evice to its neighbors. [10]
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e Releasé, x): the servica is released with respect to task
In addition, services can execute two actions:
e readyToStarta, x): servicea declares to be ready to start performing task
o finishedTaska,x,q): servicea declares to have completed executing tas&turning output.

The termsp andq denote arbitrary sets of input/output, which depend on pleeific task. Special
constant 0 denotes empty input or output.

The interleaving of actions performed by the PMS and sesviseas follows. After the assign-
ment of a certain task by Assigria,x), when the servica is ready to start executing, it executes
actionreadyToStartTadla, x). At this stage, PMS executes acti@bart(a,x, p), after whicha starts
executing task. Whena completes task, it executes the actiofinishedTaska, x,q). Specifically,
we envision that actionsinishedTask) are those in charge of changing properties of world as re-
sult of executing tasks. Whenis completed, PMS is allowed in any moment to execute seiglignt
AckTaskCompletiqa, x) andReleaséa,x). The program coding the process will the executed by only
one actor, specifically the PMS. Therefore, actioesdyToStartTagk) and finishedTask) are con-
sidered as external and, hence, not coded in the progralfn itse

For each specific domain, we have several fluents repregetm@nproperties of situations. Some
of them are modelled independently of the domain wherearstithe majority, are defined according
to the domain. If they are independent of the domain, theybeaalways formulated as defined in this
chapter. Among the domain-independent ones, we have fluesta, s), that denotes the fact that the
serviceais free, i.e., no task has been assigned to it, in the situatibhe corresponding successor state
axiom is as follows:

frega,do(t,s)) <
(¥xt # Assigria, x) A free(a,s)) v 1)
(—free(a,s) A3Ixt = Releaséa, X))

This says that a servi@s considered free in the current situation if and onlg\fas free in the previous
situation and no tasks have been just assigned todwas not free and it has been just released. There
exists also the domain-independent fluenabledx, a,s) which aims at representing whether senéce
has notified to be ready to execute a certain tast as to enabled it. The corresponding successor-state
axiom:
enabledx,a,do(t,s)) <
(enabledx,a,s) AVa.t # finishedTaska, x,q)) v (2)
(—enabledx,a,s) At = readyToStartTagle, X))

This says thaenabledx,a,s) holds in the current situation if and only if it held in the pi@s one
and no actionfinishedTaska,x,q) has been performed or it was false in the previous situatiah a
readyToStartTagk, x) has been executed. This fluent aims at enforcing the conisttaat the PMS can
executeStart(a, x, p) only aftera performedbeguria, x) and it can execut&ckTaskCompletida, X, q)
only after finishedTaska, x,q). This can represented by two pre-conditions on acti®test(-) and
AckTaskCompletign):

Vp.PosgStart(a, x, p),s) < enabledx, a,s)

Vp.PosgAckTaskCompletidm, a),s) < —enabledx,a, s) ®)

provided thatAckTaskCompletidm,a) never comes beforgtart(x, a, p), s.
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Furthermore, we introduce a domain-independent flaentedx, a, p, s) that holds if and only if an
actionStart(a, x, p) has been executed but the ddakTaskCompletigi, a) has not yet:

starteda,x, p,dao(t,s)) <
(starteda,x, p,s) At # Stofa, x)) Vv (4)
(AP startedx,a, p',s) At = Start(a, X, p))

In addition, we make use, in every specific domain, of a pegdiavailablega,s) which denotes
whether a servica is available in situatiors for tasks assignment. Howeveayailable is domain-
dependent and, hence, requires to be defined specificalgvéoy domain. Knowing whether a service
is available is very important for the PMS when it has to penfassignments. Indeed, a task assigned
to the best servicawhich is available and provides every capability requirgc.bThe fact that a certain
servicea is free does not imply it can be assigned to tasks (e.g., iexhenple described above it has
to be free as well as it has to be indirectly connected to tledioator). The definition ohvailablg-)
must enforce the following condition:

Va savailablga,s) = free(a,s) (5)

We do not give explicitly pre-conditions to task. We assumsks$ can always be executed. We
assume that, given a task, if some conditions do not holdy the outcomes of that tasks are not as
expected (in other terms, it fails).

5 TheSmartPM System

This section aims at describing the internal structure oBPMgurd 2 shows its conceptual architecture.
At the beginning, a responsible person designs an Activigiam through SPIDE, Brocess Designer
Graphical tool with whictbmartPM is equipped. Later, Such a tool translates the Activity Eaagin a
XML format file. Then, such a XML file is loaded into PMS. TK&L-to-IndiGolog Parsercomponent
translates this specification irCeomain ProgramtheIndiGolog program corresponding to the designed
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process, and a set Bfomain Axiomswhich is the action theory that comprises the initial ditrg the
set of available actions with their pre- and post-condgion

When the program is translated in the Domain Program andmsi@ component nhamé&tbmmu-
nication Manager(CM) starts up all ofdevice managersvhich are basically some drivers for making
communicate PMS with the services and sensors installedaines. For each real world device PMS
holds a device manager. Each device manager is also intéoidedtifying the associated device about
every action performed by tHemartPM engine as well as for notifying themartPM engine about the
actions executed by the services of the associated device.

After this initialization process, CM activates theliGolog Engine which is in charge of executing
IndiGolog programs. Then, CM enters into a passive mode where it enlis for messages arriving
from the devices through the device managers. In generatsaage can be a exogenous event harvested
by a certain sensor installed on a given device as well as aagesotifying the start or completion of a
certain task. When CM judges a message as significant, iafoisit tolndiGolog. For instance, relevant
messages may be signals of the task completion or the sud@®ailability of a given device.

In sum, CM is responsible of deciding which device shouldgrer certain actions, instructing the
appropriate device managers to communicate with the deeingces and collecting the corresponding
sensing outcome. ThiadiGolog Engine is intended to executesanse-think-acinterleaved loopl[8].
The cycle repeats at all times the following three steps:

1. check for exogenous events that have occurred;
2. calculate the next program step; and
3. if the step involves an actioexecutehe action, instructing the Communication Manager.

ThelndiGolog Engine relies on two further modules namidnsition SysterandTemporal Projec-
tor. The former is used to compute the evolutionlediGolog programs according to the statements’
semantic, whereas the latter is in charge of holding theeatirsituations throughout the execution as
well as letting evaluate the fluent values for taking thetrigrision of the actions to perform.

The last module that is worth mentioning is tBgecution MonitofMON), which get notifications
of exogenous events from the Communication Manager. ltdéscivhether adaptation is needed and
adapts accordingly the process. Sedftion 7.2 gives someamdidetails of the concrete implementation
of monitoring and adaptation.

6 A Concrete Example from Emergency Management

We turn to describe the approach by an example concerninggeney management in an area affected
by an earthquake. The emergency response process in guestigprises various activities that may
need to be adapted on-the-fly to react to unexpected exogenants that could arise during the op-
eration. Figuré 3 depicts an Activity Diagram of a processsisting of two concurrent branches; the
final task issend dataand can only be executed after the branches have successiutipleted. The
left branch, abstracted out from the diagram, is built fraaesal concurrent processes involving tasks
rescue evacuatiorand others. The right branch begins with the concurrentugiatof three sequences
of tasks:go, photq andsurvey When all survey tasks have been completed, the éaaluate pictures

is executed. Then, a condition is evaluated on the resudliate at a decision point (i.e., whether the
pictures taken are of sufficient quality). If the conditioolds, the right branch is considered finished,;
otherwise, the whole branch should be repeated.
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Figure 3: An activity diagram of a process concerning emargenanagement.

Figure[4 shows some parts of theliGolog program representing the process of the example. The
code proposes here has been slightly simplified and alestréat the sake of brevity. The main pro-
cedure, calledhain, involves three interrupts running at different priomstieThe first highest priority
interrupt fires when an exogenous event occurs (i.e., dondikogEvent is true). In such a case, the
monitor procedure is executed, evaluating whether or not adapteticequired (see Sectién 7.2).

If no exogenous event has occurred, the second interrggiens and execution of the actual emer-
gency response process is attempted. Procethsreess, also shown in the figure, encodes the Activity
Diagram of the example process. It relies, in turn, on praoedanageTasks (WrkLists), where
WrkLists is a sequence of elementsrkitem(T,I,D), each one representing a tagkwith identifier
I, and input dat®, which needs to be performed. This procedure is meant to gesiie execution of
all tasks in the worklist, and it assigns them all teirggleservice that provides every capability required.

Of course, to assign tasks to an servismartPM needs to reason about the available ones, their
current state (e.g., their location), and their capabgitias not every service is capable of performing
any task. In fact, before assigning the first task in any tagk procedurenanageTasks (WrkLists)
executes gick operation is done to choose a Servierc that is involved in no task execution (i.e.,
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proc(main,

prioritized_interrupts(
[interrupt (exogEvent, monitor),
interrupt(true, process),
interrupt(neg(finished), wait)]

»N.

proc(process, [rrobin(processRescue,
while (or (noPhotos<7,neg(goodPics)),
[rrobin(

[manageTasks (
[workitem((go,id19,1l0c(5,5)),
workitem( (photo,id20,loc(5,5)),
workitem((survey,id21,loc(5,5))1),

manageTasks (
[workitem((go,id19,1loc(15,15)),
workitem( (photo,id20,loc(15,15)),
workitem((survey,id21,loc(15,15))1),

manageTasks (
[workitem((go,id19,10c(50,50)),
workitem((photo,id20,1l0c(50,50)),
workitem((survey,id21,1l0c(50,50))1),

1

),
manageTasks ([workitem((evalPics,i1d28,input)])
1) % end of while
), % end concurrent subprocesses
manageTasks ([workitem((sendData,id29,input)])
n.

proc (manageTasks (WrkList),
pi(srve,
[?(and(Available(srvc) ,Capable(srvc,WrkList))),
manageExecution(WrkList,srvc),
]
»N.
proc (manageExecution([],Srvc), [1).
proc (manageExecution([workitem(Task,Id,I)|TAIL],Srvc),
[assign(Task,Id,Srvc,I),
start(Task,Id,Srvc,I),
ackTaskCompletion(Task,Id,Srvc),
release(Task,Id,Srvc,I),
manageExecution(TAIL,Srvc)
]
)

Figure 4: An example of process management WwithiGolog.

fluentFree (actr) holds) and able to execute the whole worklist.

Once a suitable service has been chosen, PMS assigns thef liasks to it by executing
assign(srvc,WrkList). In addition to inform the service about the task assignm&nth an action
turns fluenfFree (actr) to false.

Then, PMS calls procedutinageExecution (WrkList), which handles the execution of each task
in the list. For each task T in the list (with identifiérand input dat®), the procedure invokes action
start(T,D,I,srvc) that provides the required information to the chosen sert@c. In this way, the
service is instructed to begin working on the task and recstie required input. When a service finishes
executing an assigned task, it al&StaartPM via actionfinishedTask (T, srvc); PMS acknowledges
by performingackTaskCompletion (T,D,actr). When the whole work-item list is execution, the
PMS releases the service by executing the aatirease (T,D, actr), after which fluenFree (srvc)
is turned to true again.
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It is worth mentioning that, if the process being carried carinot execute temporarily further, the
lowest priority interrupt fires. This interrupt makes PMSitwar the conditions in which some tasks
can be executed. The fact that the process gets stuck dospipinecessarily the occurrence of some
relevant exogenous events. It could be also caused by thehfzicnext tasks can be only assigned
to services that are currently busy busy performing othgksta The latter situation does not prevent
processes from being completed successfully; indeed, sersfices will be eventually free to work on
those tasks.

7 Adaptation in SmartPM

7.1 Monitoring Formalisation

Next we formalize how the monitor works. Intuitively, the nitwr takes the current progradi and
the current situatiors' from the PMS'’s virtual reality and, analyzing the physicedlity by sensors,
introduces fake actions in order to get a new situagbnvhich aligns the virtual reality of the PMS
with sensed information. Then, it analyzes whetblecan still be executed id’, and if not, it adaptg’

by generating a new correctly executable progi&m Specifically, the monitor work can be abstractly
defined as follows (we do not model how the situatitiis generated from the sensed information):

Monitor(d’,,s",8") < (Relevantd’,s,s”) A Recoveryd’,s,s",8")) v ©)
(-Relevantd’,s,s") A 8" = &)

where: (i) Relevan{d’,s,s’) states whether the change from the situaidnto s’ is such tha®’ cannot

be correctly executed anymore; afiifiRecoveryd’,s,s’,d") is intended to hold whenever the program

d’, to be originally executed in situatia is adapted t@” in order to be executed in situatisfi.
Formally Relevantis defined as follows:

Relevantd’,s,s’) & -SameConfifp’,s,d’,s")

whereSameConfigy’,s,d”,s") is true if executingd’ in s is “equivalent” to executing” in s’ (see
later for further details).

In this general framework we do not give a definition #mmeConfigy’,s,d”,s"). However we
consider any definition foBameConfigo be correct if it denotes a bisimulation [12]. Formallyr fo
everyd’,s,d”,s" holds:

1. Final(d',s) < Final(d”,s)

2. V¥a,6'.Trang&',s,8,do(a,s)) =

36".Trang(d",s",8',do(a, ")) A SameConfigd’,do(a,s),8”,do(a,s"))
3. Va0 . Trang8",s", &, do(a,s")) =

36".Trangd',s,d',do(a,s)) A SameConfifd”,do(a,s"),¥,do(a,s))

Intuitively, a predicateSameConfi@’,s,d”,s") is said to be correct i®’ and d” are terminable
either both or none of them. Furthermore, for each acigerformable byd’ in the situations, &”
in the situations” has to enable the performance of the same actions (and segveMoreover, the
resulting configuration§d’,do(a,s')) and(9”,do(a,s')) must still satisfySameCon fig

The use of the bisimulation criteria to state when a predi€&ameConfig--) is correct, derives

from the notion of equivalence introduced [in [5]. When conmgaithe execution of two formally differ-
ent business processes, the internal states of the pregesgebe ignored, because what really matters
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is the process behavior that can be observed. This view tetlee way a PMS works: indeed what is
of interest is the set of tasks that the PMS offers to its emwirent, in response to the inputs that the
environment provides.

Next we turn our attention to the procedure to adapt the psofmalized byRecoveryd,s, s, d’).
Formally is defined as follows:

Recoveryd’,s,s’,8") < 30,4, &.0" = da; & A Deterministi¢d,) A
Do(d,,5", %) A SameConfigy’, s, &, %)

Recoverydetermines a proces¥’ consisting of adeterministicd, (i.e., a program not using the
concurrency construct), and an arbitrary progrdyn The aim ofd, is to lead from the situatios” in
which adaptation is needed to a new situapwhereSameConfip’,s, &, ) is true.

The nice feature of RCOVERY is that it asks to search for a linear program that achievestain
formula, namelySameStat&',s’). That is we have reduced the synthesis of a recovery prograan t
classical Planning problem in AL[4]. As a result we can adopfell-developed literature about planning
for our aim. In particular, if the services and input and otifparameters are finite, then the recovery can
be reduced tgropositional planning, which is known to be decidable in general (for wahiery well
performing software tools exists).

Notice that during the actual recovery phasewe disallow for concurrency because we need full
control on the execution of each service in order to get tacavered state. Then the actual recovered
programd, can again allow for concurrency.

In the previous sections we have provided a general deseriph how adaptation can be defined
and performed. Here we choose a specific technique thatualpcteasible in practice. Our main step
is to adopt a specific definition f@ameConfighere denoted asaE CONFIG, namely:

(7)

SAMECONFIG(d',9,8",5") & SameStat,s") A &' = 8" 8)

In other words, 8ME CONFIG states thad’, s andd”, s’ are the same configuration(ij all fluents
have the same truth values in batlands” (SameStafe and(ii) d” is actuallyé’B In papers/[[11],9], we
have proved that the above-definedv& CONFIG is a correct bisimulation.

Using Equation B aSameCon figlefinition feasible in practice, relevancy results to be:

RELEVANT (&',S,5") & —SameStats',s’) 9)

In the next section, we are going to show how the abstractplaspecification given here has been
concretely used insidémartPM. Specifically the current version &martPM uses the proportional
planner available in thindiGolog platform developed by University of Toronto and RMIT in Mellrne.

In order to adaptSmartPM is based on the concrete definitions of relevancy SacheCon figyiven by
Equation$ B and]8.

7.2 The Execution Monitoring and Adaptation

As already told, adaptation amounts to find a linear progiam (vithout concurrency) that is meant
to be “appended” before the currdntliGolog program remaining to be executed. Such a linear program
is meant to resolve the gap that was just sensed by resttiengatues of affected fluents to those before
the occurrence of the deviation.

4Observe thaBameStatean actually be defined as a first-order formula over the fiyastthe conjunction &(s) < F(s”)
for each fluenf.
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proc(monitor, [ndet (
[?(neg(relevant))],
[?(relevant) ,recovery]

.
proc(recovery, searchn([searchProgram],10).

proc(searchProgram, [star(pi([Task,Id,Input,srvc],
[?(and(Available(srvc),
Capable(srvc, [workitem(Task,Id,Input)]))),
manageExecution([workitem(Task,Id,Input)],srvc)])),
7(SameState)]) .

Figure 5: The procedure for managing automatic adaptatitimtire IndiGolog interpreter.

Figure[% shows how adaptability has been concretely imphéadeinSmartPM. The execution of
the process being carried out BynartPM can be interrupted by theonitor procedure when a mis-
alignment between the virtual and the physical reality &sdvered.

Themonitor procedure is the concrete coding of Equafidn 6 and reliesrocepurerelevant.
Procedurerelevant returns true if the exogenous event has created a gap betivegrhysical and
virtual reality that is in accord with Equati@n 9. For thisraiSmartPM keeps a “copy” of the expected
value of each defined fluent so that when an exogenous actsamsed it can check whether the action
has altered the value of some fluent.

If the gap is relevant, procedutescovery is invoked. It amounts to find a linear program (i.e.,
without concurrency) to reduce the gap sensed as well as;hif& program is found, to execute it. After
executing such a linear program, the program coded by mptincess (and its possible sub-routines)
can progress again. This behaviour is equivalent to thatesgpd formally in Equation] 7 where the
adapting linear program is “appended before” and, henaxwted before the remaining process.

Therecovery procedure looks for a sequence of actions that brings taati&in in which proce-
dureSameState returns true:z((ma.a)*; SameStafg. ProcedureSsameState tests whether executing
(ma.a)* really has really reduced the gap. The use oflthiGolog’s lookahead operatd guarantees
the action sequendgra.a)* is chosen so as to malkeameState true. In fact, we do not look for any
action sequencg@rra.a)* but we reduce the search space since we search for sequéioescations of
procedurenanageExecution with appropriate parameters.

8 Conclusion

Most of existing PMSs are not completely appropriate folywdynamic and pervasive scenarios. In-
deed, such scenarios are turbulent and subject to a higimrefncy of unexpected contingencies with
respect to usual business settings that show a static atatiforeseeable behaviour. This paper describes
SmartPM, an adaptive PMS that is able to adapt processes thus remp@em exceptions. Adaptation
is synthesized automatically without relying either on itervention of domain experts or on the ex-
istence of specific handlers planned in advance to cope wé#hific exceptions. Space limitation has
prevented from including concrete examples of adaptatiterested readers can referltol[11].

Future works aim mostly at integratirignartPM with state-of-art planners. Indeed, current imple-
mentation relies on thindiGolog planner, which performs a blind search without using smaeteh-
niques recently proposed to reduce the search space byireeopriori all the possibility surely taking
to no solution. The most challenging issue is to convertdkciiheories andhdiGolog programs in a
way they can be given as input to planners (e.g., convertiiDXDL [3]).
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