696 research outputs found

    Photonic crystal-driven spectral concentration for upconversion photovoltaics

    Get PDF
    International audienceThe main challenge for applying upconversion (UC) to silicon photovoltaics is the limited amount of solar energy harvested directly via erbium-based upconverter materials (24.5 W m(-2)). This could be increased up to 87.7 W m(-2) via spectral concentration. Due to the nonlinear behavior of UC, this could increase the best UC emission by a factor 13. In this paper, the combined use of quantum dots (QDs)for luminescent down-shiftingand photonic crystals (PCs)for reshaping the emissionto achieve spectral concentration is shown. This implies dealing with the coupling of colloidal QDs and PC at the high-density regime, where the modes are shifted and broadened. In the first fabricated all-optical devices, the spectral concentration rises by 67%, the QD emission that matches the absorption of erbium-based upconverters increases by 158%, and the vertical emission experiences a 680% enhancement. Remarkably, the PC redshifts the overall emission of the QDs, which could be used to develop systems with low reabsorption losses. In light of this, spectral concentration should be regarded as one of the main strategies for UC photovoltaics

    Temporal and spatial variations of the absolute reflectivity of Jupiter and Saturn from 0.38 to 1.7 μ\mum with PlanetCam-UPV/EHU

    Full text link
    We provide measurements of the absolute reflectivity of Jupiter and Saturn along their central meridians in filters covering a wide range of visible and near-infrared wavelengths (from 0.38 to 1.7 μ\mum) that are not often presented in the literature. We also give measurements of the geometric albedo of both planets and discuss the limb-darkening behavior and temporal variability of their reflectivity values for a period of four years (2012-2016). This work is based on observations with the PlanetCam-UPV/EHU instrument at the 1.23 m and 2.2 m telescopes in Calar Alto Observatory (Spain). The instrument simultaneously observes in two channels: visible (VIS; 0.38-1.0 μ\mum) and short-wave infrared (SWIR; 1.0--1.7 μ\mum). We obtained high-resolution observations via the lucky-imaging method. We show that our calibration is consistent with previous independent determinations of reflectivity values of these planets and, for future reference, provide new data extended in the wavelength range and in the time. Our results have an uncertainty in absolute calibration of 10--20\%. We show that under the hypothesis of constant geometric albedo, we are able to detect absolute reflectivity changes related to planetary temporal evolution of about 5-10\%.Comment: 13 pages, 18 figures, (in press

    Semilocal and local convergence of a fifth order iteration with Frechet derivative satisfying Holder condition

    Full text link
    The semilocal and local convergence in Banach spaces is described for a fifth order iteration for the solutions of nonlinear equations when the Frechet derivative satisfies the Holder condition. The Holder condition generalizes the Lipschtiz condition. The importance of our work lies in the fact that many examples are available which fail to satisfy the Lipschtiz condition but satisfy the Holder condition. The existence and uniqueness theorem is established with error bounds for the solution. The convergence analysis is finally worked out on different examples and convergence balls for each of them are obtained. These examples include nonlinear Hammerstein and Fredholm integral equations and a boundary value problem. It is found that the larger radius of convergence balls is obtained for all the examples in comparison to existing methods using stronger conditions. (C) 2015 Elsevier Inc. All rights reserved.Singh, S.; Gupta, D.; Martínez Molada, E.; Hueso Pagoaga, JL. (2016). Semilocal and local convergence of a fifth order iteration with Frechet derivative satisfying Holder condition. Applied Mathematics and Computation. 276:266-277. doi:10.1016/j.amc.2015.11.062S26627727

    Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces

    Full text link
    In this work we introduce a new form of setting the general assumptions for the local convergence studies of iterative methods in Banach spaces that allows us to improve the convergence domains. Specifically a local convergence result for a family of higher order iterative methods for solving nonlinear equations in Banach spaces is established under the assumption that the Frechet derivative satisfies the Lipschitz continuity condition. For some values of the parameter, these iterative methods are of fifth order. The importance of our work is that it avoids the usual practice of boundedness conditions of higher order derivatives which is a drawback for solving some practical problems. The existence and uniqueness theorem that establishes the convergence balls of these methods is obtained. We have considered a number of numerical examples including a nonlinear Hammerstein equation and computed the radii of the convergence balls. It is found that the radius of convergence ball obtained by our approach is much larger when compared with some other existing methods. The global convergence properties of the family are explored by analyzing the dynamics of the corresponding operator on complex quadratic polynomials.Martínez Molada, E.; Singh, S.; Hueso Pagoaga, JL.; Gupta, D. (2016). Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Applied Mathematics and Computation. 281:252-265. doi:10.1016/j.amc.2016.01.036S25226528

    Gold-Platinum Nanoparticles with Core-Shell Configuration as Efficient Oxidase-like Nanosensors for Glutathione Detection

    Get PDF
    Nanozymes, defined as nanomaterials that can mimic the catalytic activity of natural enzymes, have been widely used to develop analytical tools for biosensing. In this regard, the monitoring of glutathione (GSH), a key antioxidant biomolecule intervening in the regulation of the oxidative stress level of cells or related with Parkinson’s or mitochondrial diseases can be of great interest from the biomedical point of view. In this work, we have synthetized a gold-platinum Au@Pt nanoparticle with core-shell configuration exhibiting a remarkable oxidase-like mimicking activity towards the substrates 3,3′,5,5′-tetramethylbenzidine (TMB) and o-phenylenediamine (OPD). The presence of a thiol group (-SH) in the chemical structure of GSH can bind to the Au@Pt nanozyme surface to hamper the activation of O2 and reducing its oxidase-like activity as a function of the concentration of GSH. Herein, we exploit the loss of activity to develop an analytical methodology able to detect and quantify GSH up to µM levels. The system composed by Au@Pt and TMB demonstrates a good linear range between 0.1–1.0 µM to detect GSH levels with a limit of detection (LoD) of 34 nM

    Stationary waves and slowly moving features in the night upper clouds of Venus

    Full text link
    At the cloud top level of Venus (65-70 km altitude) the atmosphere rotates 60 times faster than the underlying surface, a phenomenon known as superrotation. Whereas on Venus's dayside the cloud top motions are well determined and Venus general circulation models predict a mean zonal flow at the upper clouds similar on both day and nightside, the nightside circulation remains poorly studied except for the polar region. Here we report global measurements of the nightside circulation at the upper cloud level. We tracked individual features in thermal emission images at 3.8 and 5.0 μm\mathrm{\mu m} obtained between 2006 and 2008 by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS-M) onboard Venus Express and in 2015 by ground-based measurements with the Medium-Resolution 0.8-5.5 Micron Spectrograph and Imager (SpeX) at the National Aeronautics and Space Administration Infrared Telescope Facility (NASA/IRTF). The zonal motions range from -110 to -60 m s−1^{-1}, consistent with those found for the dayside but with larger dispersion. Slow motions (-50 to -20 m s−1^{-1}) were also found and remain unexplained. In addition, abundant stationary wave patterns with zonal speeds from -10 to +10 m s−1^{-1} dominate the night upper clouds and concentrate over the regions of higher surface elevation.Comment: 15 pages, 4 figures, 6 supplementary figure

    Modeling a Schottky-barrier carbon nanotube field-effect transistor with ferromagnetic contacts

    Full text link
    In this study, a model of a Schottky-barrier carbon nanotube field- effect transistor (CNT-FET), with ferromagnetic contacts, has been developed. The emphasis is put on analysis of current-voltage characteristics as well as shot (and thermal) noise. The method is based on the tight-binding model and the non- equilibrium Green's function technique. The calculations show that, at room temperature, the shot noise of the CNT FET is Poissonian in the sub-threshold region, whereas in elevated gate and drain/source voltage regions the Fano factor gets strongly reduced. Moreover, transport properties strongly depend on relative magnetization orientations in the source and drain contacts. In particular, one observes quite a large tunnel magnetoresistance, whose absolute value may exceed 50%.Comment: 8 pages, 4 figure

    Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain

    Full text link
    Large thermal changes driven by a magnetic field have been proposed for environmentally friendly energy efficient refrigeration, but only a few materials which suffer hysteresis show these giant magnetocaloric effects. Here we create giant and reversible extrinsic magnetocaloric effects in epitaxial films of the ferromagnetic manganite La0.7Ca0.3MnO3 using strain mediated feedback from BaTiO3 substrates near a first-order structural phase transition. Our findings should inspire the discovery of giant magnetocaloric effects in a wide range of magnetic materials, and the parallel development of nanostructured bulk samples for practical applications.Comment: 32 pages, 1 Table, 5 figures, supplementary informatio
    • …
    corecore