91 research outputs found
MARIS: Method for Analyzing RNA following Intracellular Sorting
Transcriptional profiling is a key technique in the study of cell biology that is limited by the availability of reagents to uniquely identify specific cell types and isolate high quality RNA from them. We report a Method for Analyzing RNA following Intracellular Sorting (MARIS) that generates high quality RNA for transcriptome profiling following cellular fixation, intracellular immunofluorescent staining and FACS. MARIS can therefore be used to isolate high quality RNA from many otherwise inaccessible cell types simply based on immunofluorescent tagging of unique intracellular proteins. As proof of principle, we isolate RNA from sorted human embryonic stem cell-derived insulin-expressing cells as well as adult human β cells. MARIS is a basic molecular biology technique that could be used across several biological disciplines.Howard Hughes Medical InstituteHarvard Stem Cell InstituteNational Institutes of Health (U.S.) (grant 2U01DK07247307)National Institutes of Health (U.S.) (grant RL1DK081184)National Institutes of Health (U.S.) (grant 1U01HL10040804
Single Cell Genome Amplification Accelerates Identification of the Apratoxin Biosynthetic Pathway from a Complex Microbial Assemblage
Filamentous marine cyanobacteria are extraordinarily rich sources of structurally novel, biomedically relevant natural products. To understand their biosynthetic origins as well as produce increased supplies and analog molecules, access to the clustered biosynthetic genes that encode for the assembly enzymes is necessary. Complicating these efforts is the universal presence of heterotrophic bacteria in the cell wall and sheath material of cyanobacteria obtained from the environment and those grown in uni-cyanobacterial culture. Moreover, the high similarity in genetic elements across disparate secondary metabolite biosynthetic pathways renders imprecise current gene cluster targeting strategies and contributes sequence complexity resulting in partial genome coverage. Thus, it was necessary to use a dual-method approach of single-cell genomic sequencing based on multiple displacement amplification (MDA) and metagenomic library screening. Here, we report the identification of the putative apratoxin. A biosynthetic gene cluster, a potent cancer cell cytotoxin with promise for medicinal applications. The roughly 58 kb biosynthetic gene cluster is composed of 12 open reading frames and has a type I modular mixed polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS) organization and features loading and off-loading domain architecture never previously described. Moreover, this work represents the first successful isolation of a complete biosynthetic gene cluster from Lyngbya bouillonii, a tropical marine cyanobacterium renowned for its production of diverse bioactive secondary metabolites
Exendin-4 enhances the differentiation of Wharton’s jelly mesenchymal stem cells into insulin-producing cells through activation of various β-cell markers
Regenerative Medicine: Advances from Developmental to Degenerative Diseases
Chronic tissue and organ failure caused by an injury, disease, ageing or congenital defects represents some of the most complex therapeutic challenges and poses a significant financial healthcare burden. Regenerative medicine strategies aim to fulfil the unmet clinical need by restoring the normal tissue function either through stimulating the endogenous tissue repair or by using transplantation strategies to replace the missing or defective cells. Stem cells represent an essential pillar of regenerative medicine efforts as they provide a source of progenitors or differentiated cells for use in cell replacement therapies. Whilst significant leaps have been made in controlling the stem cell fates and differentiating them to cell types of interest, transitioning bespoke cellular products from an academic environment to off-the-shelf clinical treatments brings about a whole new set of challenges which encompass manufacturing, regulatory and funding issues. Notwithstanding the need to resolve such issues before cell replacement therapies can benefit global healthcare, mounting progress in the field has highlighted regenerative medicine as a realistic prospect for treating some of the previously incurable conditions
Relationship Between Early Childhood Oral Health Impact Scale, Child's Dental Status and Parental Psychological Profiles.
BACKGROUND: The aim of this study was to assess the influence of a child's dental status and parental psychological profiles on parental perception of their child's oral health. MATERIALS: This study involved 164 parents of children under five years of age, who filled out the life quality assessment test regarding oral health (ECOHIS test), and Depression, Anxiety and Stress Scale (DASS) questionnaire. The child's oral status was also examined and recorded. RESULTS: Results of the ECOHIS appeared to correlate positively with the number of active caries (R = 0.457; P <0.001). In addition, the ECOHIS showed a significant correlation with the DASS test results (R = 0.356; P <0.001 for depression, R = 0.247; P <0.001 for anxiety and R = 0.235; P <0.001 for the stress result). CONCLUSION: The dental health of a child affects his/her quality of life and the parental quality of life including their psychological status
Exploring the biomedical potential of uncultivated bacterial symbionts by metagenomic techniques
- …
