17,676 research outputs found

    Strings and D-Branes with Boundaries

    Get PDF
    The covariant field equations of ten-dimensional super D-branes are obtained by considering fundamental strings whose ends lie in the superworldsurface of the D-brane. By considering in a similar fashion Dp-branes ending on D(p+2)-branes we derive equations describing D-branes with dual potentials, as well as the vector potentials.Comment: 12 pages, Late

    On the generation of side-edge flap noise

    Get PDF
    A theory is proposed for estimating the noise generated at the side edges of part span trailing edge flaps in terms of pressure fluctuations measured just in-board of the side edge of the upper surface of the flap. Asymptotic formulae are developed in the opposite extremes of Lorentz contracted acoustic wavelength large/small compared with the chord of the flap. Interpolation between these limiting results enables the field shape and its dependence on subsonic forward flight speed to be predicted over the whole frequency range. It is shown that the mean width of the side edge gap between the flap and the undeflected portion of the airfoil has a significant influence on the intensity of the radiated sound. It is estimated that the noise generated at a single side edge of a full scale part span flap can exceed that produced along the whole of the trailing edge of the flap by 3 dB or more

    On the long range propagation of sound over irregular terrain

    Get PDF
    The theory of sound propagation over randomly irregular, nominally plane terrain of finite impedance is discussed. The analysis is an extension of the theory of coherent scatter originally proposed by Biot for an irregular rigid surface. It combines Biot's approach, wherein the surface irregularities are modeled by a homogeneous distribution of hemispherical bosses, with more conventional analyses in which the ground is modeled as a smooth plane of finite impedance. At sufficiently low frequencies the interaction of the surface irregularities with the nearfield of a ground-based source leads to the production of surface waves, which are effective in penetrating the ground shadow zone predicted for a smooth surface of the same impedance

    L-branes

    Get PDF
    The superembedding approach to pp-branes is used to study a class of pp-branes which have linear multiplets on the worldvolume. We refer to these branes as L-branes. Although linear multiplets are related to scalar multiplets (with 4 or 8 supersymmetries) by dualising one of the scalars of the latter to a pp-form field strength, in many geometrical situations it is the linear multiplet version which arises naturally. Furthermore, in the case of 8 supersymmetries, the linear multiplet is off-shell in contrast to the scalar multiplet. The dynamics of the L-branes are obtained by using a systematic procedure for constructing the Green-Schwarz action from the superembedding formalism. This action has a Dirac-Born-Infeld type structure for the pp-form. In addition, a set of equations of motion is postulated directly in superspace, and is shown to agree with the Green-Schwarz equations of motion.Comment: revised version, minor changes, references added, 22 pages, no figures, LaTe

    Harmonic Superspaces and Superconformal Fields

    Get PDF
    Representations of four-dimensional superconformal groups on harmonic superfields are discussed. It is argued that any representation can be given as a superfield on many superflag manifolds. Representations on analytic superspaces do not require constraints. We discuss short representations and how to obtain them as explicit products of fundamental fields. We also discuss superfields that transform under supergroups.Comment: 7 pages, JHEP Proceedings style. Contribution to the Proceedings of the TMR Conference "Non-Perturbative Quantum Effects 2000," Paris, September 200

    Note on two-dimensional nonlinear gauge theories

    Get PDF
    A two-dimensional nonlinear gauge theory that can be proposed for generalization to higher dimensions is derived by means of cohomological arguments.Comment: 12 pages, LaTeX 2.

    Maximal supergravity in three dimensions: supergeometry and differential forms

    Full text link
    The maximal supergravity theory in three dimensions, which has local SO(16) and rigid E8E_8 symmetries, is discussed in a superspace setting starting from an off-shell superconformal structure. The on-shell theory is obtained by imposing further constraints. It is essentially a non-linear sigma model that induces a Poincar\'e supergeometry that is described in detail. The possible pp-form field strengths, for p=2,3,4p=2,3,4, are explicitly constructed using supersymmetry and E8E_8. The gauged theory is also discussed.Comment: 27 pages. Small changes to the text; added reference

    Influence of design parameters on the starting torque of a single-phase PM brushless DC motor

    Get PDF
    The starting torque of a single-phase permanent magnet brushless DC motor is investigated, for both radial and parallel magnetization. Finite element analysis is used to assess the relative merits of alternative methods of introducing the required air gap asymmetry, viz. tapered air gap, stepped air gap, asymmetric air gap, and slotted teeth. The predicted results are validated experimentall

    Evolutionary Models of Super-Earths and Mini-Neptunes Incorporating Cooling and Mass Loss

    Full text link
    We construct models of the structural evolution of super-Earth- and mini-Neptune-type exoplanets with hydrogen-helium envelopes, incorporating radiative cooling and XUV-driven mass loss. We conduct a parameter study of these models, focusing on initial mass, radius, and envelope mass fractions, as well as orbital distance, metallicity, and the specific prescription for mass loss. From these calculations, we investigate how the observed masses and radii of exoplanets today relate to the distribution of their initial conditions. Orbital distance and initial envelope mass fraction are the most important factors determining planetary evolution, particular radius evolution. Initial mass also becomes important below a "turnoff mass," which varies with orbital distance, with mass-radius curves being approximately flat for higher masses. Initial radius is the least important parameter we study, with very little difference between the hot start and cold start limits after an age of 100 Myr. Model sets with no mass loss fail to produce results consistent with observations, but a plausible range of mass loss scenarios is allowed. In addition, we present scenarios for the formation of the Kepler-11 planets. Our best fit to observations Kepler-11b and Kepler-11c involves formation beyond the snow line, after which they moved inward, circularized, and underwent a reduced degree mass loss.Comment: 17 pages, 18 figures, 1 table, Accepted to Ap
    corecore