34 research outputs found

    Low depressive symptoms in acute spinal cord injury compared to other neurological disorders

    Full text link
    The aim of the study was to reveal the incidence and time course of depressive symptoms following acute spinal cord injury (SCI) in relation to clinical outcomes for comparison to other neurological disorders with severe impairment. In patients with acute traumatic SCI (n = 130), combined follow up assessments of neurological and functional outcomes, pain and patient-rated affective factors (e.g. mood, anxiety) were prospectively (1, 3, 6, 12 months after injury) collected during rehabilitation and follow up in out-patient clinics. We related these to the severity of depressive symptoms (no, mild, moderate and severe) based on the Beck Depression Inventory (BDI) scores. The mean 65% of patients showed no depressive symptoms and 30% mild depressive symptoms, while less than 5% presented moderate to severe depressive symptoms. The group findings and symptoms in individual patients remained stable over 1 year though patients revealed significant clinical recovery. Although two-thirds of the patients experienced pain, BDI scores were not related to pain intensity. BDI mean scores were only slightly higher than in control populations, but rather low compared to patients with other neurological disorders (e.g. stroke and multiple sclerosis) that are also associated with severe functional impairment. The prevalence of depressive symptoms following acute SCI is rather low and remains stable within the first year after injury despite the severe neurological impairment and loss of independency. In comparison to other neurological disorders that also involve brain function SCI patients seem to be less challenged by depressive symptoms that constitute additional burdens to respond to the severe functional impairments

    Changes of non‐affected upper limb cortical representation in paraplegic patients as assessed by fMRI

    Get PDF
    Peripheral and central nervous system lesions can induce reorganization within central somatosensory and motor body representations. We report changes in brain activation patterns during movements of non‐affected body parts in paraplegic patients with spinal cord injury (SCI). Nine SCI patients and 12 healthy controls underwent blood oxygen level dependent signal functional MRI during sequential finger‐to‐thumb opposition, flexion and extension of wrist and of elbow, and horizontal movements of the tongue. Single subject and group analyses were performed, and the activation volumes, maximum t values and centres of gravity were calculated. The somatotopical upper limb and tongue representations in the contralateral primary motor cortex (M1) in the SCI patients were preserved without any shift of activation towards the deefferented and deafferented M1 foot area. During finger movements, however, the SCI patients showed an increased volume in M1 activation. Increased activation was also found in non‐primary motor and parietal areas, as well as in the cerebellum during movements of the fingers, wrist and elbow, whereas no changes were present during tongue movements. These results document that, in paraplegic patients, the representation of the non‐impaired upper limb muscles is modified, though without any topographical reorganization in M1. The extensive changes in primary and non‐primary motor areas, and in subcortical regions demonstrate that even distant neuronal damage has impact upon the activation of the whole sensorimotor syste

    What Disconnection Tells about Motor Imagery: Evidence from Paraplegic Patients

    Get PDF
    Brain activation during motor imagery has been the subject of a large number of studies in healthy subjects, leading to divergent interpretations with respect to the role of descending pathways and kinesthetic feedback on the mental rehearsal of movements. We investigated patients with complete spinal cord injury (SCI) to find out how the complete disruption of motor efferents and sensory afferents influences brain activation during motor imagery of the disconnected feet. Eight SCI patients underwent behavioral assessment and functional magnetic resonance imaging. When compared to a healthy population, stronger activity was detected in primary and all non-primary motor cortical areas and subcortical regions. In paraplegic patients the primary motor cortex was consistently activated, even to the same degree as during movement execution in the controls. Motor imagery in SCI patients activated in parallel both the motor execution and motor imagery networks of healthy subjects. In paraplegics the extent of activation in the primary motor cortex and in mesial non-primary motor areas was significantly correlated with the vividness of movement imagery, as assessed by an interview. The present findings provide new insights on the neuroanatomy of motor imagery and the possible role of kinesthetic feedback in the suppression of cortical motor output required during covert movement

    Virtual reality rehabilitation system for neuropathic pain and motor dysfunction in spinal cord injury patients

    Full text link
    Spinal cord injury (SCI) causes both lower limb motor dysfunction and associated neuropathic pain. Although these two conditions share related cortical mechanisms, different interventions are currently used to treat each condition. With intensive training using entertaining virtual reality (VR) scenarios, it may be possible to reshape cortical networks thereby reducing neuropathic pain and improving motor function. We have created the first VR training system combining action observation and execution addressing lower limb function in incomplete SCI (iSCI) patients. A particular feature of the system is the use of size-adjustable shoes with integrated motion sensors. A pilot single-case clinical study is currently being conducted on six iSCI patients. Two patients tested to date were highly motivated to perform and reported improved physical well-being. They improved in playing skill and in controlling the virtual lower limbs. There were post-intervention indications of neuropathic pain decrease, muscle strength increase, faster walking speed and improved performance on items relevant for ambulation. In addition functional MRI before and after treatment revealed a decreased activation pattern. We interpret this result as an improvement of neuronal synergies for this task. These results suggest that our VR system may be beneficial for both reducing neuropathic pain and improving motor function in iSCI patients

    The translation, validity and reliability of the German version of the Fremantle Back Awareness Questionnaire

    Get PDF
    Background: The Fremantle Back Awareness Questionnaire (FreBAQ) claims to assess disrupted self-perception of the back. The aim of this study was to develop a German version of the Fre-BAQ (FreBAQ-G) and assess its test-retest reliability, its known-groups validity and its convergent validity with another purported measure of back perception. Methods: The FreBaQ-G was translated following international guidelines for the transcultural adaptation of questionnaires. Thirty-five patients with non-specific CLBP and 48 healthy participants were recruited. Assessor one administered the FreBAQ-G to each patient with CLBP on two separate days to quantify intra-observer reliability. Assessor two administered the FreBaQ-G to each patient on day 1. The scores were compared to those obtained by assessor one on day 1 to assess inter-observer reliability. Known-groups validity was quantified by comparing the FreBAQ-G score between patients and healthy controls. To assess convergent validity, patient\u27s FreBAQ-G scores were correlated to their two-point discrimination (TPD) scores. Results: Intra- and Inter-observer reliability were both moderate with ICC3.1 = 0.88 (95%CI: 0.77 to 0.94) and 0.89 (95%CI: 0.79 to 0.94), respectively. Intra- and inter-observer limits of agreement (LoA) were 6.2 (95%CI: 5.0±8.1) and 6.0 (4.8±7.8), respectively. The adjusted mean difference between patients and controls was 5.4 (95%CI: 3.0 to 7.8, p\u3c0.01). Patient\u27s FreBAQ-G scores were not associated with TPD thresholds (Pearson\u27s r = -0.05, p = 0.79). Conclusions: The FreBAQ-G demonstrated a degree of reliability and known-groups validity. Interpretation of patient level data should be performed with caution because the LoA were substantial. It did not demonstrate convergent validity against TPD. Floor effects of some items of the FreBAQ-G may have influenced the validity and reliability results. The clinimetric properties of the FreBAQ-G require further investigation as a simple measure of disrupted self-perception of the back before firm recommendations on its use can be made

    Mismatch between investigator-determined and patient-reported independence after spinal cord injury: consequences for rehabilitation and trials

    Full text link
    OBJECTIVE: This study investigated the course and relationship between investigator-determined and patient-reported level of independence within the first year after spinal cord injury (SCI). The authors examined variables that contributed to these scores. METHODS: In this observational cohort study, 73 patients with traumatic SCI were evaluated at 1, 3, and 6 months (and 40 subjects at 1 to 12 months). The investigator-determined independence was quantified using the Spinal Cord Independence Measure (SCIM). The subjective, patient-reported independence was determined by asking how their general restrictions influenced everyday life activities. Several variables were used to explain these 2 scores. RESULTS: The SCIM score was higher than the patient-reported independence and improved significantly more over time (up to about 70/100 at 12 months), whereas the perceived independence remained below 50/100. The correlations between the 2 measures were at most moderate (r(s) ≀ 0.51), but in general somewhat higher for subjects with tetraplegia. Age and muscle strength predicted the SCIM score well. No variable predicted the patient-reported level of independence. CONCLUSIONS: Investigator-determined and patient-reported outcomes can differ considerably and evolve differently. A patient-reported outcome measure may not detect actual functional improvement. It is likely that changes in patient-reported outcomes are influenced by many factors in addition to those associated with functional recovery, including psychological factors

    Movement observation activates lower limb motor networks in chronic complete paraplegia

    Full text link
    Background. In healthy subjects, observation of actions activates a motor network similar to that involved in the performance of the observed actions. Movement observation could perhaps be applied to functionally sustain brain motor functions when efferent motor commands and proprioceptive feedbacks are disconnected. Objective. The authors examined whether observation-induced brain activation is preserved in people with chronic complete spinal cord injury (SCI). Methods. Nine patients and 12 healthy subjects underwent behavioral assessment and functional magnetic resonance imaging. The SCI patients attempted to perform dorsal and plantar flexions of the right foot, and the controls also executed the same movement. Both groups observed subsequent video clips showing the same movement. Results. In the SCI group, attempted and observed foot movements activated a common observation-execution network including ventral premotor, parietal cortex, and cerebellum as in healthy subjects. Conclusions. Long after onset of complete SCI, the brain maintains its ability to respond to task-specific visual inputs, which suggests preservation of motor programs. This persistence might be a prerequisite for repair strategies of the spinal cord that rely on appropriate activation of the brain to try to restore limb function. The preserved cortical network may offer an additional motor rehabilitation approach for people with SCI

    Preservation of motor programs in paraplegics as demonstrated by attempted and imagined foot movements

    Full text link
    Execution and imagination of movement activate distinct neural circuits, partially overlapping in premotor and parietal areas, basal ganglia and cerebellum. Can long-term deafferented/deefferented patients still differentiate attempted from imagined movements? The attempted execution and motor imagery network of foot movements have been investigated in nine chronic complete spinal cord-injured (SCI) patients using fMRI. Thorough behavioral assessment showed that these patients were able to differentiate between attempted execution and motor imagery. Supporting the outcome of the behavioral assessment, fMRI disclosed specific patterns of activation for movement attempt and for motor imagery. Compared with motor execution data of healthy controls, movement attempt in SCI patients revealed reduced primary motor cortex activation at the group level, although activation was found in all single subjects with a high variability. Further comparisons with healthy subjects revealed that during attempt and motor imagery, SCI patients show enhanced activation and recruitment of additional regions in the parietal lobe and cerebellum that are important in sensorimotor integration. These findings reflect central plastic changes due to altered input and output and suggest that SCI patients may require additional cognitive resources to perform these tasks that may be one and the same phenomenon, or two versions of the same phenomenon, with quantitative differences between the two. Nevertheless, the retained integrity of movement attempt and motor imagery networks in SCI patients demonstrates that chronic paraplegics can still dispose of the full motor programs for foot movements and that therefore, attempted and imagined movements should be integrated in rehabilitative strategies
    corecore