71 research outputs found

    ESCargo: a regulatable fluorescent secretory cargo for diverse model organisms

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Casler, J. C., Zajac, A. L., Valbuena, F. M., Sparvoli, D., Jeyifous, O., Turkewitz, A. P., Horne-Badovinac, S., Green, W. N., & Glick, B. S. ESCargo: a regulatable fluorescent secretory cargo for diverse model organisms. Molecular Biology of the Cell, (2020): mbcE20090591, doi:10.1091/mbc.E20-09-0591.Membrane traffic can be studied by imaging a cargo protein as it transits the secretory pathway. The best tools for this purpose initially block export of the secretory cargo from the endoplasmic reticulum (ER), and then release the block to generate a cargo wave. However, previously developed regulatable secretory cargoes are often tricky to use or specific for a single model organism. To overcome these hurdles for budding yeast, we recently optimized an artificial fluorescent secretory protein that exits the ER with the aid of the Erv29 cargo receptor, which is homologous to mammalian Surf4. The fluorescentsecretory protein forms aggregates in the ER lumen and can be rapidly disaggregated by addition of a ligand to generate a nearly synchronized cargo wave. Here we term this regulatable secretory proteinESCargo (Erv29/Surf4-dependent Secretory Cargo) and demonstrate its utility not only in yeast cells, but also in cultured mammalian cells, Drosophila cells, and the ciliate Tetrahymena thermophila. Kinetic studies indicate that rapid export from the ER requires recognition by Erv29/Surf4. By choosing an appropriate ER signal sequence and expression vector, this simple technology can likely be used withmany model organisms.This work was supported by NIH grant R01 GM104010 to BSG, by NIH grant R01 GM105783 to APT, by NIH grant R01 GM136961 and American Cancer Society grant RSG-14-176 to SHB, and by NIH grant R01 DA044760 to WNG. JCC was supported by NIH training grant T32 GM007183. AZ was supported by American Heart Association fellowship 16POST2726018 and American Cancer Society fellowship 132123-PF-18-025-01-CSM. Thanks for assistance with fluorescence microscopy to Vytas Bindokas and Christine Labno at the Integrated Microscopy Core Facility, which is supported by the NIH-funded Cancer Center Support Grant P30 CA014599. The pUASt-ManII-eGFP plasmid was a gift from Bing Ye, and the Ubi-Gal4 plasmid was a gift from Rick Fehon.2020-12-2

    In Vivo Conditions to Identify Prkci Phosphorylation Targets Using the Analog-Sensitive Kinase Method in Zebrafish

    Get PDF
    Protein kinase C iota is required for various cell biological processes including epithelial tissue polarity and organ morphogenesis. To gain mechanistic insight into different roles of this kinase, it is essential to identify specific substrate proteins in their cellular context. The analog-sensitive kinase method provides a powerful tool for the identification of kinase substrates under in vivo conditions. However, it has remained a major challenge to establish screens based on this method in multicellular model organisms. Here, we report the methodology for in vivo conditions using the analog-sensitive kinase method in a genetically-tractable vertebrate model organism, the zebrafish. With this approach, kinase substrates can uniquely be labeled in the developing zebrafish embryo using bulky ATPÎłS analogs which results in the thiophosphorylation of substrates. The labeling of kinase substrates with a thiophosphoester epitope differs from phosphoesters that are generated by all other kinases and allows for an enrichment of thiophosphopeptides by immunoaffinity purification. This study provides the foundation for using the analog-sensitive kinase method in the context of complex vertebrate development, physiology, or disease

    liver-enriched gene 1a and 1b Encode Novel Secretory Proteins Essential for Normal Liver Development in Zebrafish

    Get PDF
    liver-enriched gene 1 (leg1) is a liver-enriched gene in zebrafish and encodes a novel protein. Our preliminary data suggested that Leg1 is probably involved in early liver development. However, no detailed characterization of Leg1 has been reported thus far. We undertook both bioinformatic and experimental approaches to study leg1 gene structure and its role in early liver development. We found that Leg1 identifies a new conserved protein superfamily featured by the presence of domain of unknown function 781 (DUF781). There are two copies of leg1 in zebrafish, namely leg1a and leg1b. Both leg1a and leg1b are expressed in the larvae and adult liver with leg1a being the predominant form. Knockdown of Leg1a or Leg1b by their respective morpholinos specifically targeting their 5′-UTR each resulted in a small liver phenotype, demonstrating that both Leg1a and Leg1b are important for early liver development. Meanwhile, we found that injection of leg1-ATGMO, a morpholino which can simultaneously block the translation of Leg1a and Leg1b, caused not only a small liver phenotype but hypoplastic exocrine pancreas and intestinal tube as well. Further examination of leg1-ATGMO morphants with early endoderm markers and early hepatic markers revealed that although depletion of total Leg1 does not alter the hepatic and pancreatic fate of the endoderm cells, it leads to cell cycle arrest that results in growth retardation of liver, exocrine pancreas and intestine. Finally, we proved that Leg1 is a secretory protein. This intrigued us to propose that Leg1 might act as a novel secreted regulator that is essential for liver and other digestive organ development in zebrafish

    Rab11 Is Required for Epithelial Cell Viability, Terminal Differentiation, and Suppression of Tumor-Like Growth in the Drosophila Egg Chamber

    Get PDF
    The Drosophila egg chamber provides an excellent system in which to study the specification and differentiation of epithelial cell fates because all of the steps, starting with the division of the corresponding stem cells, called follicle stem cells, have been well described and occur many times over in a single ovary.Here we investigate the role of the small Rab11 GTPase in follicle stem cells (FSCs) and in their differentiating daughters, which include main body epithelial cells, stalk cells and polar cells. We show that rab11-null FSCs maintain their ability to self renew, even though previous studies have shown that FSC self renewal is dependent on maintenance of E-cadherin-based intercellular junctions, which in many cell types, including Drosophila germline stem cells, requires Rab11. We also show that rab11-null FSCs give rise to normal numbers of cells that enter polar, stalk, and epithelial cell differentiation pathways, but that none of the cells complete their differentiation programs and that the epithelial cells undergo premature programmed cell death. Finally we show, through the induction of rab11-null clones at later points in the differentiation program, that Rab11 suppresses tumor-like growth of epithelial cells. Thus, rab11-null epithelial cells arrest differentiation early, assume an aberrant cell morphology, delaminate from the epithelium, and invade the neighboring germline cyst. These phenotypes are associated with defects in E-cadherin localization and a general loss of cell polarity.While previous studies have revealed tumor suppressor or tumor suppressor-like activity for regulators of endocytosis, our study is the first to identify such activity for regulators of endocytic recycling. Our studies also support the recently emerging view that distinct mechanisms regulate junction stability and plasticity in different tissues

    M6 Membrane Protein Plays an Essential Role in Drosophila Oogenesis

    Get PDF
    We had previously shown that the transmembrane glycoprotein M6a, a member of the proteolipid protein (PLP) family, regulates neurite/filopodium outgrowth, hence, M6a might be involved in neuronal remodeling and differentiation. In this work we focused on M6, the only PLP family member present in Drosophila, and ortholog to M6a. Unexpectedly, we found that decreased expression of M6 leads to female sterility. M6 is expressed in the membrane of the follicular epithelium in ovarioles throughout oogenesis. Phenotypes triggered by M6 downregulation in hypomorphic mutants included egg collapse and egg permeability, thus suggesting M6 involvement in eggshell biosynthesis. In addition, RNAi-mediated M6 knockdown targeted specifically to follicle cells induced an arrest of egg chamber development, revealing that M6 is essential in oogenesis. Interestingly, M6-associated phenotypes evidenced abnormal changes of the follicle cell shape and disrupted follicular epithelium in mid- and late-stage egg chambers. Therefore, we propose that M6 plays a role in follicular epithelium maintenance involving membrane cell remodeling during oogenesis in Drosophila

    Role of Scrib and Dlg in anterior-posterior patterning of the follicular epithelium during Drosophila oogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proper patterning of the follicle cell epithelium over the egg chamber is essential for the <it>Drosophila </it>egg development. Differentiation of the epithelium into several distinct cell types along the anterior-posterior axis requires coordinated activities of multiple signaling pathways. Previously, we reported that <it>lethal(2)giant larvae </it>(<it>lgl</it>), a <it>Drosophila </it>tumor suppressor gene, is required in the follicle cells for the posterior follicle cell (PFC) fate induction at mid-oogenesis. Here we explore the role of another two tumor suppressor genes, <it>scribble </it>(<it>scrib</it>) and <it>discs large </it>(<it>dlg</it>), in the epithelial patterning.</p> <p>Results</p> <p>We found that removal of <it>scrib </it>or <it>dlg </it>function from the follicle cells at posterior terminal of the egg chamber causes a complete loss of the PFC fate. Aberrant specification and differentiation of the PFCs in the mosaic clones can be ascribed to defects in coordinated activation of the EGFR, JAK and Notch signaling pathways in the multilayered cells. Meanwhile, the clonal analysis revealed that loss-of-function mutations in <it>scrib/dlg </it>at the anterior domains result in a partially penetrant phenotype of defective induction of the stretched and centripetal cell fate, whereas specification of the border cell fate can still occur in the most anterior region of the mutant clones. Further, we showed that <it>scrib </it>genetically interacts with <it>dlg </it>in regulating posterior patterning of the epithelium.</p> <p>Conclusion</p> <p>In this study we provide evidence that <it>scrib </it>and <it>dlg </it>function differentially in anterior and posterior patterning of the follicular epithelium at oogenesis. Further genetic analysis indicates that <it>scrib </it>and <it>dlg </it>act in a common pathway to regulate PFC fate induction. This study may open another window for elucidating role of <it>scrib/dlg </it>in controlling epithelial polarity and cell proliferation during development.</p

    Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – A model for cross-modulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A feature of epithelial to mesenchymal transition (EMT) relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST) induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC.</p> <p>Methods</p> <p>PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1) and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR) and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin) were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome.</p> <p>Results</p> <p>When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4) and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4). Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse correlation with lower expression values being predictive of increased risk.</p> <p>Conclusion</p> <p>ST in combination with EGF directed a greater EMT via actin depolymerisation and focal contact size reduction, resulting in a loosening of cell-ECM attachment along with Snail1-Zeb1/δEF1 induction. This appeared fundamentally different to the EGF-induced EMT, highlighting the multiple pathways which can regulate EMT. Our findings add support for a functional role for Snail1 in invasive breast cancer.</p

    A morphogenetic EphB/EphrinB code controls hepatopancreatic duct formation

    Get PDF
    © 2019 The Authors. Published by Springer. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1038/s41467-019-13149-7The hepatopancreatic ductal (HPD) system connects the intrahepatic and intrapancreatic ducts to the intestine and ensures the afferent transport of the bile and pancreatic enzymes. Yet the molecular and cellular mechanisms controlling their differentiation and morphogenesis into a functional ductal system are poorly understood. Here, we characterize HPD system morphogenesis by high-resolution microscopy in zebrafish. The HPD system differentiates from a rod of unpolarized cells into mature ducts by de novo lumen formation in a dynamic multi-step process. The remodeling step from multiple nascent lumina into a single lumen requires active cell intercalation and myosin contractility. We identify key functions for EphB/EphrinB signaling in this dynamic remodeling step. Two EphrinB ligands, EphrinB1 and EphrinB2a, and two EphB receptors, EphB3b and EphB4a, control HPD morphogenesis by remodeling individual ductal compartments, and thereby coordinate the morphogenesis of this multi-compartment ductal system.This work was funded by the Novo Nordisk Foundation (NNF17CC0027852) and Danish National Research Foundation (DNRF116). J.C. and D.G.W. were supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001217), the UK Medical Research Council (FC001217), and the Wellcome Trust (FC001217). S.C. was supported by an SNSF Early Postdoc Mobility fellowship (P2ZHP3_164840) and a Long Term EMBO Postdoc fellowship (ALTF 511-2016), and L.S. and J.B.A. by the Independent Research Fund Denmark (DFF; Sapere Aude2 4183-00118B).Published versio

    Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis

    Get PDF
    BACKGROUND: The Par-3/Par-6/aPKC complex is a key regulator of cell polarity in a number of systems. In Drosophila, this complex acts at the zonula adherens (adherens junctions) to establish epithelial polarity and helps to orient the mitotic spindle during asymmetric neuroblast divisions. In MDCKII cells, this complex localizes to the zonula occludens (tight junctions) and appears to regulate epithelial polarity. However, the in vivo role of this complex during vertebrate embryogenesis is not known, due to the lack of relevant mutations. RESULTS: We have positionally cloned the zebrafish heart and soul (has) mutation, which affects the morphogenesis of several embryonic tissues, and show that it encodes atypical protein kinase C lambda (aPKC lambda). We find that loss of aPKC lambda affects the formation and maintenance of the zonula adherens in the polarized epithelia of the retina, neural tube, and digestive tract, leading to novel phenotypes, such as the formation of multiple lumens in the developing intestine. In addition, has mutants display defects in gut looping and endodermal organ morphogenesis that appear to be independent of the defects in epithelial polarity. Finally, we show that loss of aPKC lambda leads to defects in spindle orientation during progenitor cell divisions in the neural retina. CONCLUSIONS: Our results show that aPKC lambda is required for the formation and maintenance of the zonula adherens during early epithelial development in vertebrates and demonstrate a previously undescribed yet critical role for this protein in organ morphogenesis. Furthermore, our studies identify the first genetic locus regulating the orientation of cell division in vertebrates
    • …
    corecore