63 research outputs found

    Life cycle assessment of nanocellulose-reinforced advanced fibre composites

    Get PDF
    The research and development of nanocellulose-reinforced polymer composites have dramatically increased in the recent years due to the possibility of exploiting the high tensile stiffness and strength of nanocellulose. In the work, the environmental impacts of bacterial cellulose (BC)- and nanofibrillated cellulose (NFC)-reinforced epoxy composites were evaluated using life cycle assessment (LCA). Neat polylactide (PLA) and 30% randomly oriented glass fibre-reinforced polypropylene (GF/PP) composites were used as benchmark materials for comparison. Our cradle-to-gate LCA showed that BC- and NFC-reinforced epoxy composites have higher global warming potential (GWP) and abiotic depletion potential of fossil fuels (ADf) compared to neat PLA and GF/PP even though the specific tensile moduli of the nanocellulose-reinforced epoxy composites were higher than neat PLA and GF/PP. However, when the use phase and the end-of-life of nanocellulose-reinforced epoxy composites were considered, the “green credentials” of nanocellulose-reinforced epoxy composites were comparable to that of neat PLA and GF/PP composites. Our life cycle scenario analysis showed that the cradle-to-grave GWP and ADf of BC- and NFC-reinforced epoxy composites could be lower than neat PLA when the composites contains more than 60 vol.-% nanocellulose. Our LCA model suggests that nanocellulose-reinforced epoxy composites with high nanocellulose loading is desired to produce materials with “greener credentials” than the best performing commercially available bio-derived polymer

    Scale-up of an intensified bioprocess for the expansion of bovine adipose-derived stem cells (bASCs) in stirred tank bioreactors

    Get PDF
    Cultivated meat is an emerging field, aiming to establish the production of animal tissue for human consumption in an in vitro environment, eliminating the need to raise and slaughter animals for their meat. To realise this, the expansion of primary cells in a bioreactor is needed to achieve the high cell numbers required. The aim of this study was to develop a scalable, microcarrier based, intensified bioprocess for the expansion of bovine adipose-derived stem cells as precursors of fat and muscle tissue. The intensified bioprocess development was carried out initially in spinner flasks of different sizes and then translated to fully controlled litre scale benchtop bioreactors. Bioprocess intensification was achieved by utilising the previously demonstrated bead-to-bead transfer phenomenon and through the combined addition of microcarrier and medium to double the existing surface area and working volume in the bioreactor. Choosing the optimal time point for the additions was critical in enhancing the cell expansion. A significant fold increase of 114.19 ± 1.07 was obtained at the litre scale in the intensified bioprocess compared to the baseline (**p < .005). The quality of the cells was evaluated pre- and post-expansion and the cells were found to maintain their phenotype and differentiation capacity

    Elasticity of podosome actin networks produces nanonewton protrusive forces

    No full text
    Actin filaments generate force in diverse contexts, although how they can produce nanonewtons of force is unclear. Here, the authors apply cryo-electron tomography, quantitative analysis, and modelling to reveal the podosome core is a dense, spring-loaded, actin network storing elastic energy. Actin filaments assemble into force-generating systems involved in diverse cellular functions, including cell motility, adhesion, contractility and division. It remains unclear how networks of actin filaments, which individually generate piconewton forces, can produce forces reaching tens of nanonewtons. Here we use in situ cryo-electron tomography to unveil how the nanoscale architecture of macrophage podosomes enables basal membrane protrusion. We show that the sum of the actin polymerization forces at the membrane is not sufficient to explain podosome protrusive forces. Quantitative analysis of podosome organization demonstrates that the core is composed of a dense network of bent actin filaments storing elastic energy. Theoretical modelling of the network as a spring-loaded elastic material reveals that it exerts forces of a few tens of nanonewtons, in a range similar to that evaluated experimentally. Thus, taking into account not only the interface with the membrane but also the bulk of the network, is crucial to understand force generation by actin machineries. Our integrative approach sheds light on the elastic behavior of dense actin networks and opens new avenues to understand force production inside cells

    sandflyDST: a dynamic web-based decision support tool for the morphological identification of sandflies present in Anatolia and mainland Europe, and user study

    No full text
    WOS: 000387023700009PubMed ID: 27339389Species identification of sandflies is mainly performed according to morphological characters using classical written identification keys. This study introduces a new web-based decision support tool (sandflyDST) for guiding the morphological identification of sandfly species present in Anatolia and mainland Europe and classified in the Phlebotomus and Sergentomyia genera (both: Diptera: Psychodidae). The current version of the tool consists of 111 questions and 36 drawings obtained from classical written keys, and 107 photographs for the quick and easy identification of 26 species of the genus Phlebotomus and four species of the genus Sergentomyia. The tool guides users through a decision tree using yes/no questions about the morphological characters of the specimen. The tool was applied by 30 individuals, who then completed study questionnaires. The results of subsequent analyses indicated that the usability ((x) over bar (SUS Score) = 75.4) and users' level of appreciation (86.6%) of the tool were quite high; almost all of the participants considered recommending the tool to others. The tool may also be useful in training new entomologists and maintaining their level of expertise. This is a dynamic tool and can be improved or upgraded according to feedback. The tool is now available online at http://parasitology.ege.edu.tr/sandflyDST/index.php
    • 

    corecore