189 research outputs found
Entomological surveillance following a long-lasting insecticidal net universal coverage campaign in Midwestern Uganda.
BACKGROUND: A universal coverage campaign (UCC) with long-lasting insecticidal nets (LLINs) was implemented in four districts in Midwestern Uganda in 2009-2010. Entomological surveys were carried out to monitor changes in vector density, behaviour and malaria transmission following this intervention. METHODS: Anopheles mosquitoes were collected using CDC light traps quarterly and human landing catch twice a year in four sites. Collections were done at baseline before the campaign and over a three-year period following the campaign. Plasmodium falciparum circumsporozoite enzyme-linked immunosorbent assays were performed. A subset of anophelines were molecularly identified to species, and kdr L1014S frequencies were determined. RESULTS: The prevailing malaria vector in three sites was Anopheles gambiae s.l. (>97 %), with An. funestus s.l. being present in low numbers only. An. gambiae s.s. dominated (> 95 %) over An. arabiensis within A. gambiae s.l. In the remaining site, all three vector species were observed, although their relative densities varied among seasons and years. Vector densities were low in the year following the UCC but increased over time. Vector infectivity was 3.2 % at baseline and 1.8 % three years post-distribution (p = 0.001). The daily entomological inoculation rate (EIR) in 2012 varied between 0.0-0.98 for the different sites compared to a baseline EIR that was between 0.0-5.8 in 2009. There was no indication of a change in indoor feeding times, and both An. gambiae s.l. and An. funestus s.l. continued to feed primarily after midnight with vectors being active until the early morning. Kdr L1014S frequencies were already high at baseline (53-85 %) but increased significantly in all sites over time. CONCLUSIONS: The entomological surveys indicate that there was a reduction in transmission intensity coinciding with an increase in use of LLINs and other antimalarial interventions in areas of high malaria transmission. There was no change in feeding behaviour, and human-vector contact occurred indoors and primarily after midnight constantly throughout the study. Although the study was not designed to evaluate the effectiveness of the intervention compared to areas with no such intervention, the reduction in transmission occurred in an area with previously stable malaria, which seems to indicate a substantial contribution of the increased LLIN coverage
Conceptual framework and rationale
The sterile insect technique (SIT) has been shown to be an effective and sustainable genetic approach to control populations of selected major pest insects, when part of area-wide integrated pest management (AW-IPM) programmes. The technique introduces genetic sterility in females of the target population in the field following their mating with released sterile males. This process results in population reduction or elimination via embryo lethality caused by dominant lethal mutations induced in sperm of the released males. In the past, several field trials have been carried out for mosquitoes with varying degrees of success. New technology and experience gained with other species of insect pests has encouraged a reassessment of the use of the sterility principle as part of integrated control of malaria vectors. Significant technical and logistic hurdles will need to be overcome to develop the technology and make it effective to suppress selected vector populations, and its application will probably be limited to specific ecological situations. Using sterile males to control mosquito vector populations can only be effective as part of an AW-IPM programme. The area-wide concept entails the targeting of the total mosquito population within a defined area. It requires, therefore, a thorough understanding of the target pest population biology especially as regards mating behaviour, population dynamics, dispersal and level of reproductive isolation. The key challenges for success are: 1) devising methods to monitor vector populations and measuring competitiveness of sterile males in the field, 2) designing mass rearing, sterilization and release strategies that maintain competitiveness of the sterile male mosquitoes, 3) developing methods to separate sexes in order to release only male mosquitoes and 4) adapting suppression measures and release rates to take into account the high reproductive rate of mosquitoes. Finally, success in area-wide implementation in the field can only be achieved if close attention is paid to political, socio-economic and environmental sensitivities and an efficient management organization is established taking into account the interests of all potential stakeholders of an AW-IPM programme
Monitoring changes in malaria epidemiology and effectiveness of interventions in Ethiopia and Uganda: Beyond Garki Project baseline survey.
Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tBACKGROUND: Scale-up of malaria interventions seems to have contributed to a decline in the disease but other factors may also have had some role. Understanding changes in transmission and determinant factors will help to adapt control strategies accordingly. METHODS: Four sites in Ethiopia and Uganda were set up to monitor epidemiological changes and effectiveness of interventions over time. Here, results of a survey during the peak transmission season of 2012 are reported, which will be used as baseline for subsequent surveys and may support adaptation of control strategies. Data on malariometric and entomological variables, socio-economic status (SES) and control coverage were collected. RESULTS: Malaria prevalence varied from 1.4Â % in Guba (Ethiopia) to 9.9Â % in Butemba (Uganda). The most dominant species was Plasmodium vivax in Ethiopia and Plasmodium falciparum in Uganda. The majority of human-vector contact occurred indoors in Uganda, ranging from 83Â % (Anopheles funestus sensu lato) to 93Â % (Anopheles gambiae s.l.), which is an important factor for the effectiveness of insecticide-treated nets (ITNs) or indoor residual spraying (IRS). High kdr-L1014S (resistance genotype) frequency was observed in A. gambiae sensu stricto in Uganda. Too few mosquitoes were collected in Ethiopia, so it was not possible to assess vector habits and insecticide resistance levels. ITN ownership did not vary by SES and 56-98Â % and 68-78Â % of households owned at least one ITN in Ethiopia and Uganda, respectively. In Uganda, 7Â % of nets were purchased by households, but the nets were untreated. In three of the four sites, 69-76Â % of people with access to ITNs used them. IRS coverage ranged from 84 to 96Â % in the three sprayed sites. Half of febrile children in Uganda and three-quarters in Ethiopia for whom treatment was sought received diagnostic tests. High levels of child undernutrition were detected in both countries carrying important implications on child development. In Uganda, 7-8Â % of pregnant women took the recommended minimum three doses of intermittent preventive treatment. CONCLUSION: Malaria epidemiology seems to be changing compared to earlier published data, and it is essential to have more data to understand how much of the changes are attributable to interventions and other factors. Regular monitoring will help to better interpret changes, identify determinants, modify strategies and improve targeting to address transmission heterogeneity.UK aid (PPA
Growth-Rate Dependence Reveals Design Principles of Plasmid Copy Number Control
Genetic circuits in bacteria are intimately coupled to the cellular growth rate as many parameters of gene expression are growth-rate dependent. Growth-rate dependence can be particularly pronounced for genes on plasmids; therefore the native regulatory systems of a plasmid such as its replication control system are characterized by growth-rate dependent parameters and regulator concentrations. This natural growth-rate dependent variation of regulator concentrations can be used for a quantitative analysis of the design of such regulatory systems. Here we analyze the growth-rate dependence of parameters of the copy number control system of ColE1-type plasmids in E. coli. This analysis allows us to infer the form of the control function and suggests that the Rom protein increases the sensitivity of control
Transgenic technologies to induce sterility
The last few years have witnessed a considerable expansion in the number of tools available to perform molecular and genetic studies on the genome of Anopheles mosquitoes, the vectors of human malaria. As a consequence, knowledge of aspects of the biology of mosquitoes, such as immunity, reproduction and behaviour, that are relevant to their ability to transmit disease is rapidly increasing, and could be translated into concrete benefits for malaria control strategies. Amongst the most important scientific advances, the development of transgenic technologies for Anopheles mosquitoes provides a crucial opportunity to improve current vector control measures or design novel ones. In particular, the use of genetic modification of the mosquito genome could provide for a more effective deployment of the sterile insect technique (SIT) against vector populations in the field. Currently, SIT relies on the release of radiation sterilized males, which compete with wild males for mating with wild females. The induction of sterility in males through the genetic manipulation of the mosquito genome, already achieved in a number of other insect species, could eliminate the need for radiation and increase the efficiency of SIT-based strategies. This paper provides an overview of the mechanisms already in use for inducing sterility by transgenesis in Drosophila and other insects, and speculates on possible ways to apply similar approaches to Anopheles mosquitoes
Transgenic technologies to induce sterility
The last few years have witnessed a considerable expansion in the number of tools available to perform molecular and genetic studies on the genome of Anopheles mosquitoes, the vectors of human malaria. As a consequence, knowledge of aspects of the biology of mosquitoes, such as immunity, reproduction and behaviour, that are relevant to their ability to transmit disease is rapidly increasing, and could be translated into concrete benefits for malaria control strategies. Amongst the most important scientific advances, the development of transgenic technologies for Anopheles mosquitoes provides a crucial opportunity to improve current vector control measures or design novel ones. In particular, the use of genetic modification of the mosquito genome could provide for a more effective deployment of the sterile insect technique (SIT) against vector populations in the field. Currently, SIT relies on the release of radiation sterilized males, which compete with wild males for mating with wild females. The induction of sterility in males through the genetic manipulation of the mosquito genome, already achieved in a number of other insect species, could eliminate the need for radiation and increase the efficiency of SIT-based strategies. This paper provides an overview of the mechanisms already in use for inducing sterility by transgenesis in Drosophila and other insects, and speculates on possible ways to apply similar approaches to Anopheles mosquitoes
Correction to: Monitoring changes in malaria epidemiology and effectiveness of interventions in Ethiopia and Uganda: Beyond Garki Project baseline survey
This is the final version. Available on open access from BMC via the DOI in this recordThe article to which this is the correction is available in ORE at http://hdl.handle.net/10871/19983Correction to: Malar J (2015) 14:337 https://doi.org/10.1186/s12936-015-0852-7
Please be advised that one of the author names is incorrectly spelled in the published article: ‘Irene Kyomuhagi’ should be ‘Irene Kyomuhangi’.
The corrected name can be found in the author list of this article
piggybac- and PhiC31-Mediated Genetic Transformation of the Asian Tiger Mosquito, Aedes albopictus (Skuse)
The Asian tiger mosquito, Aedes albopictus, is a highly invasive mosquito and has spread from South East Asia to Europe, the United States and northern areas of Asia in the past 30 years. Aedes mosquitoes transmit a range of viral diseases, including dengue and chikungunya. Aedes albopictus is generally considered to be somewhat less of a concern in this regard than Aedes aegypti. However a recent mutation in the chikungunya virus dramatically increased its transmission by Aedes albopictus, causing an important outbreak in the Indian Ocean in 2006 that eventually reached Italy in 2007. This highlights the potential importance of this mosquito, which can thrive much further from the Equator than can Aedes aegypti. This paper describes the first genetic engineering of the Asian tiger mosquito. This is an essential step towards the development of genetics-based control methods against this mosquito, and also an invaluable tool for basic research. We describe both transposon-based and site-specific integration methods
- …